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Abstract
In this paper, we prove the existence of the solution of fuzzy integral
equations of Volterra type by using the iteration of fuzzy operator. Also we
find the exact solution of fuzzy linear integral equations by using convolution
of fuzzy Laplace transformation and by using the method of successive
approximation.

1. Introduction

Park et al[9] consider the existence of solutions of fuzzy integral equations in
Banach space, and Subrahmanian and Sudarsanam[13] proved the existence of
solutions of fuzzy functional equations. Jong Y .Park et al.[11] study the approximate
solutions of the fuzzy functional integral equations.

In this work, we prove the existence of solution of the fuzzy integral equations
by extending the fundamental theorem for ordinary integral equations. Also we
study fuzzy Laplace transform and we apply it to find the exact solution of fuzzy
integral equations.

G(x) = F(x) + A j % (x,0)G(t)dt
We assume that the fuzzy functions 5, F , and E are finite fuzzy numbers.

2. Definitions And preliminaries

(i) Fuzzy numbers are a convex unique normal with bounded support subsets of real
numbers. In our work we will use fuzzy numbers with a fixed finite level set. By
using the extension principle we extended the ordinary addition, subtraction,
multiplication and division to operation on fuzzy numbers, also we extended the
order relation to fuzzy numbers as well we define the distance between two fuzzy
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numbers as'the supremum of the Hausdorff distance between.two cuts. In [2] the set
of fuzzy numbers is a complete ordered metric space. see[1]

(ii) Fuzzy linear equation on fuzzy real numbers can be solved by using finite level

set of real numbers[1] as the fuzzy equation @X + b=% wherea a, b are level
fuzzy numbers, which implies that the solution if it exists is[1]

= ., @.1)
1# a; n

(iii) Fuzzy function on fuzzy real numbers

Definition 2.1 A fuzzy mapping ﬁ is a mapping from X to the set of non-empty

fuzzy sets o Y, namely IB(Y) , In other words, to each x € X , corresponds a
fuzzy set F (x) defined on Y, whose membership function is 4 Fo and

YT

When Y = R then the fuzzy mapping is fuzzy real mapping F:X — R witha
membership function fz :R—>1.

With each fuzzy function F:X> 13(R) , there is a function F : R¥ — T
such that

pe () =Tnf Yz, (f (D) € X |, ¥f € R,
And
Yy € R, i, (0) = Supltr (N|f €R¥,y = f @),
usually we take a subset of R” such that for each xeX, yeR there exists a unique f
in this subset of R*, which implies that Vf', 4, (f) = M5, (f (%)) for each
x€ X, ,andforeach ye R, ,uﬁm(y) = fp(f) where y = fix).

let F: X >R then each x € X , ﬁ(x) is a fuzzy real number by using the a-

cut principle, then for each X € X, for each ael
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(Feo), =[Fr 0. Er )= Bw,

then F,, : X —> P(R), foreach x € X, F. (x) is closed interval

(7 @) (F @) = (Fo).
Moreover there exists two function £, , /" : X — R such that

F()=[F; (0, Fr 0] or B, =[F,F7]
et F={f,a)},be a finitt ‘bunch of functions with
,uﬁ(f,.)=a,. fori=12,...n. Then for each xelX,
F(x)={{f,(x),e,)}, where P (i(®)) =0, for i=1,2,..,n. Therefore
F(x) is a finite level fuzzy number.[3]
3-Fuzzy operators

Definition 3.1. Let L :R¥ — R¥be an operator on the set R¥ (set of all

functions from X to R). Then L’ :fﬁx — ‘:ﬁX is a fuzzy operator defined as

L' (F)= C(F) for all fuzzy function 7 € R¥ |
From this definition L*(f )=G where G = L(F ) forall FeR”, we know

that gz (»)=G(f) where y= f(x).Therefore L' (¥ )= i(F) such that
Fotoyo D)= iy (D=t (N =Suie (g €, Lig) = £, = )

Then we write

Vg € RY, hy i (8) = by (&) =suplt, (N)|f € RY,L(f) = g},

as an example when L(f)=g where g(x)= f f. Then

VgeR*,X =[a,b]
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b8 = ) =550 (D] € R 18 = [ 1]

in case of Laplace transformation L( f)=g where g(s) = Ie's' f(#)dt we have
] )

o0

feR",g(s)= [e™ f(t)ds

0

By (8) = Hiyy (8) =5UP 5 (f)

in case when F={(fi,ai)}n,thenforall g €R*, X =[a,)

‘uL'(ﬁ)(g) =Hir (&)= Sup{ai fe RX’g(s) = Ie_s’_f;- (t)dt}

4. Existence Theorem For A solution Of Linear Fuzzy Integral

Equations

In this section, we quote basic definitions [2,10,11] and theorems proved in

[2,5,11], which will be needed in the proof of existence of solution of linear fuzzy

integral equation : -

G(x) = F(x)+ ,1)]'1? (x,0)G(¢)dt @1

~

Let R be the set of fuzzy real numbers, the distance between any two fuzzy

numbers is given by

D(E,5)= sup{h(ia ,I;a ]a S I} 4.2)

where 4 is the Haousdorff distance between closed intervals in R. we know that

(E,D\) is a complete ordered metric space.
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Let F , G:X > R betwo fuzzy functions on X=[a,b] c R. Let
D'(F, 5)= Sup{D(ﬁ(X), 5(X))x € X}
4.3)

Therefore (E X ,D‘) is a complete metric space. Let L™ : 9‘~{X - ‘:ﬁx be a fuzzy
operator we know that by a fuzzy fixed point theorem{[5] that if

D*(L'(ﬁ),L'(é))SrD*(F,é) where 0<r<1
for all ﬁ,éeﬁx, then there exists a ux’lique U e R* such that L‘(ﬁ)= (7

Now we let

r ('G')x = F(x)+ AxIl? (x,))G(D)dt “.4)

and G,,, =L (Gn) is a sequence in the complete metric space R ™ ; has a fixed
point with less condition than in the contraction operator in the fixed point theorem.

Definition 4.1. A fuzzy mapping F:X—> F(R ) is called levelwise continuous at

t, € X if the mapping ﬁ; is continuous at £ = ¢ o with respect to the Hausdorff

metric D on F(R) for all ae]0,1]. As a special case when X=[a,blc R, this
definition can be generalized to [a,b] X [a,b] as follows:

~

Definition 4.2. A fuzzy mapping f : X x X — F(R) is called levelwise
continuous at point (JC,, ,to)E X XX provided, for any fixed ae[0,1] and

arbitrary £ >0, there exists §(¢,0)>0 such that

D7), [FGx.. )], )<

whenever

t-t|<5,

x—xol < 5 forallx,te X.
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Definition 4.3. Let F : X — F(R ), the integral of F over X =[a,b] denoted by

LIF*: (#)dt is defined levelwise by the equation

[ ;(ff(t)dt} = Lfa(t)dt for all O<ac<l @5)

= [ [ Fr (t)dt, [ F; (t)dt]
Theorem 4.1. If 7 : X — F(R) levelwise continuous and Supp( F' is bounded,
then F is integrable (Riemann integrable).

Theorem 4.2." Let F,G :X — F(R) be integrable and AeR. Then

@) ,J;{(F(t)+G(t))dt'= jX F()dt + jX G(t)dt,
(i) jX AF@dt= A jX F(H)dt,

(iii)y D'(F,G) is integrable,

@) D'([Foar, [ Goa)< [ D'(F.6) 0

Now, we state and prove our resulting fundamental theorem which is the
generalization of the ordinary existence theorem for a solution of integral equations.

It is enough to show that the operator

T@)(x) = f(x)+ xj/’? (x, )i (D)dt (4.6)
0

is contractive.
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Theoremd.3. “ Existence Theorem For A Solution Of Linear Fuzzy Integral
Equations Of Volterra Type”

Consider the linear fuzzy integral equation of Volterra type

a(x) = f(x)+ j/? (x, )i ()dt @7

Assume that T'(&)(x) = u(x)
) The mapping f:X — F(R) is

levelwise continuous and Supp( 7) is bounded.

~

(ii) The mapping k : X X X— F(R) is levelwise continuous.
(iii) The fuzzy mapping k (,) has un upper bound such that
Vaell] , k(x)s<M

where

0o<M , VxeX

<
|x~4]
Then T is contractive.

Proof:
D'(T®),T(%)) = Sup Sup D({?(x)}a + {_[1? -, z)ﬁ(:)dz} fFoob + {_[l? (x, :)V(:)dc} J
xeX ael0,l] > A a «

From the result of theorem 5.6[15), we have
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D'(T(@),T(¥)) = Sup Sup D({xji? (, t)ﬁ(z)dt} {ji? (x, :)v(t)dt} }

xeX ae]0,l] 5

-

= Sup Sup Max{

.xeX ae]0,1]

]k; (x, 00 (Ddt - ]k; (x, )V, (F)dt

t[k;'(x, Hu, (H)dt — ]'k; (x, )V, (2)dt }

= Sup Sup Max

xeX ael0,1]

9|

@00 -vor

]k;(x,t)(u;(t)—v;‘a))dt}

|

u, (£) - v, (D]at

< Sup Sup Max u,()—v, (t),dt

xeX ael0,1]

b

T[k; (x,2)

N

]k;(x, £y

< Sup Sup ]'i?a (x,0)D(E, (¢),%, (¢))dt

xeX ac]0,l] a

< Sup Sup jMD(fi,, ®),%,(0))dt

xeX ae]0,1] a

=M Sup ]Mﬁ(z?(t),v(t))dt

xeX a
< ijMD* (@#(0),5(0))dt = M|x—a|D" (@, 7).

Main Result ( Solutions Of Fuzzy Integral Equations)

[1] By Fuzzy Laplace Transform Method
Consider the fuzzy integral equation with fuzzy difference kernel
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H(x) =f(x)+ xj/? (x— £) (t)dt

4.8)

where

#(x) = {0}, F (0 = {2 )}, E(x-1) = {k(x- 1))},

Taking fuzzy Laplace transform to both side of (4.8), we get

L{aw)=L (7(x))+E‘ U]?(x—t)ﬁ(t)dt) (4.9)
0

By convolution theorem , equation (4.9) will be
L*@)s) = L' (Hs) + L E&)s)L Gixs) (4.10)
=>L{u@.a)l, =L{@a), +L{k@.a),L{u@.a), @i

= {Lu@) )}, = {L(F®)a)}, + {LE@)e ) (L6 ) a),
= {Lum)a), = {L(f)a), + Lk @),
{Z)a)), = {Z(£3))+ Lk @), ),
| Ve €]0,1],
L, (x)) = L(f,(x)) + Lk, ())L(w;(x)), Vi=12,..,n
L (Xs) = L (£))+ L (kXs)L (wXs)
:L@J@p%&)’ Lk)Xs) =1

= u,(x) = L(L (i, Xs)) = L1[I:L—I%I}%)
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So the solution of (4.8) is

) = o[ LX)

u(x) - {(ui (x)’ai)}n - {(L (1 L (k, XS)} a\]}'_ (4-12)
Example 4.1

Let #i(x)=f(x)+ xj/? (x — 1) (¢)dt
0

Where

79 ={(£(,03),(().1.0),(f,(x), 05)}
E(x—1t) = {k(x—1),0.3),(k;(x — 1), 1.0), (k5 (x~1),0.5)}

and

ﬁm=§ L) =% fi(x)=5x
kl(x—t) = —Z(x _t)’ kz(x—t) = —(x—t)’ k3(x_t) = (x—-t)

First we have

1 1 5
L(fiks)=57’ LX) ==, L{L)s) =,
s s s
-2 -1 1
L(k,)(s)=—s7, L(kz)(s)=-;—2—, L(k,)(s)=-s?
Now, from equation (4.12), we have

1A L (f, )(S) :
u(x)=1L (———1_ L (k,.)(s)] Ve, €]0,1]
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~1 1/252

1
| 1+2/s2]: W2

4 Vst :
u,(x)=L" —1—_*—_/—1/;7}=S1nx

Su(x)=1L sin2x

4 2
4 /s .
uy(x) = L™ #J=58mhx

_ B . .
sou(x) = {(2 5 sm2x,0.3j,(smx,1.0),(5s1nhx,0.5),}.

[2] By Method of Successive Approximation
We illustrate here how the method of successive approximation can be used to

solve the fuzzy integral equation’

7(x) =f(x)+ j/? (x,0)i (1)t @.13)
0

where #(x) = {,(x),@)},, S0 = {i(m.@)}, .k (5.0 = {k(x.0).,)},
ten {0l = {(h0ha), + [0, (0., d 4.19)
Now , equation (4.14), can be written Oas:

{w.a), = {(£.2), + {( eny (t)dta)} (4.15)
and by equation (2.1), "

{.(x),2,)}, = {( fix)+ ]’k,.(x,t)u,. ()dt, a,.J} (4.16)

0 n
which implies that for each V ¢, €]0,1]
W) = )+ oot Vi=12,.m @.17)

Now, we can apply the method of successive approximation to equation(4.17), so

we will get
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U™ (x) = £i(x) + ]k,(x,t_‘)u‘.(”')(t)dt Vi=12,.n 4.18)
’ 0
= {um (@), ), = {( £+ ]k,.(x,t)u}'"’ (t)dte, J} (4.19)
0 n
Example 4.2

Consider the linear fuzzy integral equation
X
#(x) =f (x) + [k, 0@(e)de
0

Where

7 = {(£(2,04),(f,(»,1.0)}
k(x—1) = {(k,(x,£),0.4), (k,(x,2), 1.0)}

and

f(x)=x, f,(x)=1x)=5x
k(x,)=-(x-1), k(xt)=1

Applying equation (4.19), we get
ata=0.4,

u™ (x) = f,(x) + 'kal e, )™ (t)dt
0

u™ (1) = x = [Ge=Duf™ (t)at E2)
0

we shall start with %" (£) = 0 in the integral of (E.2) to obtain " (f)
nuP(x)=x-0=x

Now
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x 3
u?(x) =x-— I(x ~t)dt = x —%

0

. X 3
t X X
u®(x) =x - I(x - t){t ———Jdt =xX——+—
3! !
5 !
If we continue this process, we obtain the m-th approximation uim)(x) as

3 5 2m+1
(m) ¥ x m X
X)=|x- bt () ——
u, ® [ TR (2m+1)!i|

Which is the m-th partial sum of the Maclaurin series of sinx. Hence the solution

#,(x) to equation (E.1) is
24,9 = Limyy.” (x) = sin x.

Now, at a = 1.0, equation (4.19) reduced to

U™ (x) = £,(x) + ]’kz (G, ™ (t)dt
0

w0 (x) =1- [ ¢yt (E.3)
0

Starting with %" (£) = 0 ,we get

uP(x) =1+0=1

u?(x) =1+ [(de =1+x
0

X 2
u®(x) =1+ j(1+t)d¢=1+x+"7
[¢]

2 3 m

X X X
UM (x) =l x+—F =+t —
! 2 ! m!
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_ . (m) —_ X
= Uu,(x)=Limy, " (x)=e
So the solution of the fuzzy integral equation (E.1) is :
u(x) = {(sin x,0.4), (" 1.0)}
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