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Abstract:

The purpose of this paper is to introduce the concepts of closure ,limit points and
boundary of set in fuzzy metric spaces. Also we introduce some topological properties and
the concepts of zero-dimensional and small inductive dimension in fuzzy metric space, some
important and interesting results are obtained .

Keywords: Fuzzy metric spaces, Limit pints, boundary ,zero-dimensional, small
inductive dimension

1. Introduction:

In 1965, the concept of fuzzy set was introduced by Zadeh [18]. One of the

most important problems in fuzzy topology is to obtain an appropriate concept of
fuzzy metric space .This problem has been investigated by Many authors
[3,4,7,12,13].They introduced the concept of fuzzy metric space in different ways.
In particular George and Veeramani [7] have introduced and studied a notion of
fuzzy metric space with the help of continuous t-norms, which constitutes a slight
but appealing modification of the one due to Kramosil and Michalek [12] and
defined a Hausdorff topology on this fuzzy metric space. Nathanson [5] introduced
the concept of round metric space and gave the relationship between round metrics
and equivalent metrics. Also Many authors have studied fixed theory in fuzzy metric
spaces such as[1,2,9,10,11,16] .
The aim of this paper is to extend some concepts to fuzzy metric spaces such as limit
point and boundary ,we obtain some results about them, we investigate two
properties of non-Archimedean fuzzy metric space, also we prove that every fuzzy
metric space is normal, Every separable fuzzy metric spaces is second countable,
And we introduce the concept of zero — dimensionality some results about this
concept are given.

2. Preliminaries

We begin with some definitions.
Definition:2.1[15] A binary operation *:[0,1]x[0,1] — [0,1] is a continuous

triangular norm (shortly t-norm) if * satisfies the following conditions:
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1.* is associative and commutative.
2. * is continuous.
3.a*1=aforall ae [0,1].

4. a"b < c*d whenevera<candb<d forall ab,c,de [0,1].

Example(2.2) The following are examples of t-norms:
(1).a*b=ab. (2)2a*b=min {a, b}. (3) a*b = max {0,a+b-1}.

Definition2.3[7) A fuzzy metric space is an ordered triple (X,M, *) such that X is an

arﬁitrary (non-empty) set, * is a continuous t-norm and M is a function defined on
X2x]0,+o0f with values in J0,1[ satisfying the following conditions, for all x,y,z € X
ands,t>0:

(@) Mxy>0,

(i) M(x,y,t) =1 ifand only if x =y,

(i) M(x,y,t) = M(yx,t),

(iv) M(x,y,t) "M(y,z,3) < M(x,z,ts),

(v) M(X,y,"):]0,+0[—[0,1] is continuos.

Then M is called a fuzzy metric on X. The function M(x,y,t) denote the degree of
nearness between x and y with respect to t, also condition (ii) is equivalent to
M(x,x,t)=1forallx € Xand t>0,and M(x,y,t) <1 forallx#yand t>0.

Remark 2.4 [9] In fuzzy metric space X, M(x, y, .) is non-decreasing for all x, y
X.

Example2.5 Let (X, d) be a metric space. Denotea. *b=ab foralla,b e [0, 1] and
let My be a fuzzy set on X2 10,00 defined as follows:

ke
kt" + md(x,y)
for all k, m, neR", x ,ye X, Then (X, M, *) is a fuzzy metric space.

Md(x, Y, 1:) =

Remark 2.6 Note the above example holds even with the t-norm a * b = min{a, b}

and hence M is a fuzzy metric with respect to any continuous t-norm.
In above example by putting k=m=n=1, we get

M A = —
CRA t+d(x,y)

We call this fuzzy metric induced by a metric 4 the standard fuzzy metric.
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Definition 2.7[7] Let (X,M, *)be a fuzzy metric space and let r € (0, 1),t > 0 and

xeX. The set B(x, 1, t) = {y €X : M(x, y, t) > 1 — r} is called the open ball with
center x and radius r with respect to £.

Theorem 2.8[7] Every open ball B(x, r, t) is an open set.

George and Veeramani proved in [7] that every fuzzy metric space (X,M, ) on X

generates a topology Ty on X which has as a base the family of open sets of the form
{Bu(x ,r ,t) : x €X; 0< r <1 ,t > 0} ,they proved that (X,ty) is Hausdorff first
countable topological space, where Ty = {A < X :for each x € X, there exist t > 0, r
€(0, 1) such that B(x, r, t) = A}.Also if (X,7) metric space, then the topology
induced by d coincides with the topology 7, induced by the fuzzy metric My.

Example2.9 Let X = N (where N is the set of neutral number) and we define
a *b=max{0,a+b-1} foralla, b e [0, 1] and let M be a fuzzy set on X% x (0,0)
defined as follows:

Jif xSy
M(x,y,t)=
Jdf  y<x

®Ie e %

for all x, y €X, and t > 0 then (X,M, *) is a fuzzy metric space. M induces on

. X
X the discrete topology , (in fact ,for X # y we have M(x, y, ) < -(—1) Now, if
X+

we choose r such that

X
0 < r< ———— theny €B(x, 1, t) if and only if M(X,y,t)>1—1> and

(x+1) (x+1)
Jtherefore, B(x, 1, t) ={x}).

Theorem 2.10{7] Let (X,M,*) is a fuzzy metric space .Then 1y is a Hausdorff
topology and for each x €X ,{B(x 1 Ly: neN} is a neighborhood base at x for the

>adn
topologytu.

Gregori and Romaguera proved in [10 ] that if (X,M,*) is a fuzzy metric space,
then

{Un: neN} is a base for a uniformity U on X compatible with Ty, where
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U, = {x; )eX xX : Mx,y,1) >1 - <} for all neN. Therefore (X,uy) is a

metrizable topological space. Also they proved that a topological space is
metrizable if and only if admits a compatible fuzzy metric.

“Theorem2.11[8] Every separable fuzzy metric spaces is second countable.

Definition 2.12[8] Let (X,M, *) be a fuzzy metric space and letr & (0, 1),t > 0 and

x € X. The set B[x, 1, t] = {y € X : M(x, y, t) > 1 — 1} is called the closed ball with
center x and radius » with respect to ¢.

Theorem 2.13[8] Every closed ball B[x, , £] is a closed set.

Definition.2.14 A subset of fuzzy metric space is said to be clopen if and only if it is
closed and open.

Theorem 2.15 [7] A sequence(x,) in a fuzzy metric space (X,M, *) converges to x if
and only if M(x,, X, t)—1 as n—co.

Example 2.16 Let X = R, the set of all real numbers.
Forx;y €X;t>0, define
m—l
M(x,y,t) = t+|x—yl
0 Jif t=0
Then M is a fuzzy metric on R . Let (s,) be a sequence defined as

Jf t>0

s, = 1 forne N.Then M(s,,x,f) =1 as n—w.
n
Definition 2.17 [8]. A sequence(x,) in a fuzzy metric space (X,M, *) is a Cauchy

sequence if and only if for each re(0, 1) and each t > 0 there exists ny eN such that
M(xy, X, t) >1 —r forall n ,m > ny

Definition 2.18 [7] A fuzzy metric space in which every Cauchy sequence is
convergent is called a complete fuzzy metric space.

Example 2.19. Let X = R", with the metric d defined by d(x,y) = | x— v/ ,and
defined

t
M(x,y,t)= ———— forallx ,y € X ,t> 0.Clearly (XM, *) is a complete fuzzy
t+d(x,y) : ' ‘ '

metric spaces.
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Theorem 2.20 [8] Let (X,M, *) be a fuzzy metric space ,then for each metric d on X
compatible with M ,the following hold;

1. A sequence(x,) in X is Cauchy in (X,M,*) if and only if it is Cauchy in (X, d).
2. (X,M, *) is complete if and only if (X,d) is complete.

Lemma 2.21 Let (XM, *) be a fuzzy metric space. If lim, _ x, = xand
lim v, =y then lim, o M(Xs,yn, *) =M (x,, *).

Definition 2.22 [17] Let (X,M, *) be a fuzzy metric space, xeX and

A < X. The distance between x and A is defined by
M(A, x, t) =sup{M(y, x,t) : y € A}forall t > 0.

Definition 2.23 A fuzzy metric space (X,M, *) is called non-Archimedean if
M(x,z,8) 2 min{M(x,y,t),M(y,z,t)} ,for all x,y,z eX.

Clearly ,if (X,M, *) is a non-Archimedean fuzzy metric ,and * is a t. norm defined
by
x*y = min{x,y},then it's fuzzy metric.

Proposition 2.24 Let d be a metric on X ,and My the corresponding standard fuzzy
metric .Then d is non-Archimedean if and only if My is non-Archimedean.

Proof. Suppose d is non-Archimedean. Then

My(x,z,t) =
t t .

2 =min{M ,(x,y,t).M ,(y,z,1)}.

f+d(rr)  trmax @y dony) My M (.20}
t t+d(x,z2) 1 )
Conversely, My(x,z,t) = ———— , and then = ,this
t+d(x,z) t M, (x,y,2)
implies that d(x,z) = J —t=t( ! -1
Md(xsyaz) Md(an’:Z)

<t ! D=

(min{Md(x9y’t),Md(yszst) ) )
max {d(x,y),d(y,2)}. =
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3-Limits point , boundary and Some topological properties in
fuzzy metric spaces

In the first of this section, we introduce the concept of limit point

Definition 3.1 Let (X,M,*)be a fuzzy metric spacé ,and A sub set of X, we say thata
point xeX is limit point of a set A if and onlyif Vr (0 <r<1),t> 0 the open ball
B(x,1,t)) NA\{x}= .

We denote the set of all limit point of A by the set d(A) or A’ ,and a subset A in
fuzzy metric space (X,M,*) is dense in X if every point of X is a limit point of A. we
prove the following theorem:

Theorem3.2 We say that xed(A) if and only if there exist a sequence (a,)
convergence
to x, where a,€A 3, # X .

Proof. Suppose xed(A) ,then for t >0 ,0 < r<1,there is an element a,-in A such that

aje B(x, 1, t)ie. M(a;, x, ) > 1 — 1, 81 #X, let 0 < 1, <1y , then there is an element a,

in A such that a,e B(X, 13, t) this implies that M(az, X, ) > 1 — 1> 1 — 1, 2 # X,

again by this way we get the sequences (ay), (ry) in A are constructed such that

M(ay, x, ) > 1 —1,, 1, > 0, 8, # X, i.e. 3, > X.

Conversely ,let(a,) be a sequence convergence to X ,a, # x and a, €A in (XM, ), let

U be any neighborhood of x then forany r t>0 ,0<r<1 there is

B(x, 1, t) = { y: M(x, y, t) > 1 —r} — U this implies ye B and corresponding to r

there exist a positive integer N such that n >N ,and since a, — X then M(a,, x,t)>1
1

e let

r <L and clearly M(a,, x, t) = 1 as n — then B(ay, 1. 9<Bx,r, ) and

M(a,, %, ) >1- % >1 —r. Thus a,e B(%, 1, t) and hence a,cU. =
We give now the concept of boundary of set in fuzzy metric spaces:

Definition3.3 Let (X,M, *) be a fuzzy metric space ,and we say that x is boundary

point of A if there exist an open ball B(x,r,t) centered at x such that B(x,r,t) } A=
and :

Bx,r,t) N X\A = & for every 0 <r < 1. And the boundary of A is the set of all
boundary points of A, denoted by OA.

Theorem.3.4 We say that xe 8A if and only if there exist a sequence of limit points
(a;) eX \A convergent to x ,and a sequence (a,) €A convergent to X.
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proof Suppose xe0A ,then for any 0 <r < 1 the ball B(x, r, t) contains points out
of both

A(i.e. the point a;) jthen M(x, a, 1) > 1- r, and X\A(i.e. the point @ ),then
M(x, @, t) > 1-r From theorem (3.2) assuming that r = r,, and r,—> 0 we obtain the
sequences (a) €A and (4, ) X \A such that @, —> Xanda@) —> x .

Conversely ,if a,—x, (a,) €A and a,’, X (a,’,) €X \A, then any ball B(x,r,t)
contains the points a, and the points a; for all sufficiently large n = n(r), therefore
xedA. m

Proposition 3.5 Let (X,M,“)be a fuzzy metric space, A ¢ X ,T < X ,then
aT(AﬂT)gaxA.

Proof. Let xe 0, (ANT).then for everyr t>0,0<r<1 there exist a points

yeANT with
M(x, y, t) > 1 — r and a points zeT\(A ) T) such that M(x, z, t) > 1 — r. But
point such as y are points of A, and points such as z are points of X\A, so x is a

boundary point of A in (X,M,*). =

We prove the following theorem:

Theorem3.6 Every fuzzy metric space (X,M, *) is normal.

Proof. Let (X,M,*) be a fuzzy metric space ,and F ,G be disjoint closed subsets of X

. Let xeF then xeG® ,since G is open there exist t,>0 ,and 0 < r, < 1.such that

B(x,t,,t) N1 G = for all xe F. Similarly there exist t,>0 ,and 0 <r, < 1such that
]

B(x,r,,t) NF =@, forall y €G. Let r = min{r,,t,},and t = min {%, ‘7”} then for given
0 <1y < 1 we can find r such that(1-ry) * (1-1g)> 1-1.

But U = stF B(x,ry,%) ,and¥V = UyeG B(y,7,,%) then U and V are open sets
containing F and G respectively ,now we claim that U {1} V= J,let ze U V then
there exist xe F and ye G such that z € B(x,7,,%) .and z € B(y, ¥, %) ,then
M(x,y, ) 2 M(x, z, §) * M(z, y,5 ) > (1-10) * (1-15) > 1-r . Hence ye B(x,1,1),
but since

I <Iy,t<ty ,B(xrt) c B(x,nt) and, thus B(x,r,.t,) (| G # & which is contradiction
.Hence X isnormal . =
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Definition 3.7 [10] A fuzzy metric space (X,M,*) is called precompact if for each
0 <r <1, and each t > 0, there is a finite subset A of X, such that

X = UaEA B(a,r,t) In this case, we say that M is a precompact fuzzy metric on
X.

Theorem 3.8[10] A fuzzy metric space is precompact if and only if every sequence
has a Cauchy subsequence.

Definition 3.9[10] A fuzzy metric space (X,M,”) is called compact if (X,1y) is a
compact topological space.

Theorem 3.10 [10] A fuzzy metric space is compact if and only if it is precompact
and complete.

Also ,we prove the following theorem:

Theorem 3.11 Every compact fuzzy metric space is separable.

Proof. Let (5(,M, *) be the given compact fuzzy metric space. Let0 < r<0,t> 0 and

t > 0. Since X is compact ,here exist X;,% , . . . X in X sich

n
that X = UB (x;,7,t) . In particular, for each n € N, we can choose a finite subset

i=l

Apsuch that X = UB(x,.,r",%

ned,
in which r,—0 Let 4 = | J 4, . Then A is countable. We claith that X' < A Let
neN
xeX. Then for each n € N, there exists a,€ A, such that x € B(a,,r,,T)

Thus a, converges to x. But since a, € A for each x & A. Hence A is dense in X
and thus X is separable. =
4- Zero-Dimensional

Recall that in the usiial metric space (R,d) the open base consisting of open set of
the form B(x,r) = (x—r, x+1).
Fot usual fuzzy metric space (X,M,*) ,where X = R ,and for example M is defined
1

XAy XVY

by M(x,y,)=1— ( ) for all x,y € R ,t> 0,and * is defined by



Some Properties and Zero-Dimensionality of Fi uzzy Metric Spaces 29

x*y =max{0,x +y -1} ,r < I/x, x # 0, then it is easy to verify that the open base
is given by
X

Bt = ( ), B(x,r,t) is an open interval or R whose diameter

b
1-rx 1+mx
converges to zero asr—> 0 .

Definitiond.1 A fuzzy metric space (X,M, *) is zero dimensional if and only if there
exists a base for the open set consisting of clopen set.

Exampled.2 A non-Archimedean fuzzy metric space (X,M,*) is zero dimensional.

Exapmed4.3 Let (X,M, *) be fuzzy metric space, X= {X1,X2,.-....xo} and we let
1= min{M(x;,xj,t),t > 0 ,i # j }then all of open balls B(x;,r.t) is clopen and these balls
constitute a base for the open sets of (X,M, *).

Now ,we prove the following theorem:

Theorem4.4 Let (X,t) be T, topological space then (x,7) is strongly zero-
dimensional and metrizable if and only if (x,7v) is non-Archimedean fuzzy
metrizable.

Proof. Suppose (X,7) is strongly zero-dimensional and metrizable ,then from [6 ] it
is non-Archimedean metrizable, and from proposition (2-24) it is non - Archimedean
fuzzy metrizable.

Conversely, suppose (X,M,*) is compatible non-Archimedean fuzzy metric in (X,7)

then the family {U, : neN } where U, ={(x,y) e X x X : M(x,y,L) >1-11is

abase for uniformly U on X which is compatible with ™, if (X,¥),(v,2) €U, then
M(x,z,1)> min{M(x, ¥, M(y, z,1 } >1-1 then (x,2) € U, thus U, - U,

c U, ie. Uy is transitive, thetefore from [ 6] the Hausdorff topological space(X,t)
is strongly zero-dimensional and metrizable space. @

Theorem4.5. Tlie only clopen sets in fuzzy metric space (R,M, *) are the sets R and

&, therefore (R, My,*) is fiot zero-dimensional.

Proof. Let (R, M,,") be a fuzzy metric space, and A be an arbitrary open set in R,
and suppose A # & and A # R, we must show that A is not clopen set or
equivalently that A has a boundary point .let (x,) ,(y, ) be two sequences in R.
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First , since A # @,we my choose a point xp€A , there exist ,r,t > 0, 0<r<1such
that

B(x1,f) < A, and since A# R we my choose, yogA .After x, and y, have been
defined ,with x,€ A which implies that there exist ,r,t> 0,0 < < 1 such that B(x,r,t)
c A and y,2 A We want to define Xg: and Vo1 .

. x +
Consider the midpoint Z, = —"——yi ifz €A, there existr,t > 0, 0<r< 1 such that
" 2

B(z,,1,t) C A, then defineXns1 = Zo ;Yar1 = Yo ,and if z,g A then define Xq| = 2y, Yas1 =
y, S0 in any case we get Xu+ eA ie. there existr,t > 0, 0 <r < 1 such that B(Xpe1,11)

c As and Yo+t gA ,Wlth Md(xn+] ’ Yo+t 5t)
t t t . .
= = = jfhen by induction
t+'xn+l_yn+l\ t+ﬂ_+__-}3n__y t+xn_yn
2 " 2
t t
Md(xn, yn yt) = = ,then Md(xm Ymt) = 1 b
t+x, =Y, t+xn_yn
pk

lxn -—ynl—-)Oas n— o.Also in metric  space R,d), | xp1—xd <

x —
| xya | = l_oiﬂl ,if we put

X, — Yo , .
l_o____l = a,thenl x,.+1—x,,| < g for every Xy+1.Xn 2 Iy, Mo € N so (%) is a Cauchy

2?!

t
sequence in (R,d), then for givenr,t>0,0<r<lwelet & =—"— t ,then
-7

M (Xpr1,Xn ) 2 = 11, for every Xu+1,Xa = N, . Thus (x,) is a Cauchy sequence in

t+e
R My, *) ,since My(X, yarl) =1,then x, =y, and we let (o) —x in (R,d), then also
. t
M(Vns X, 1) = — =1 therefore (v,) 2% .
xX—y
t+ -
2

Thus x is boundary point of A .So A'is not clopen set. =
5-Small inductive dimension(f-ind)

We introduce the following definition in fuzzy metric spaces:
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Definition5.1 A fuzzy metric space X = (X,M, *) has small inductive dimension 1

(shortly, F-ind(X) =1) if and only if X is non-zero-dimensional and there is a base

{Bu(x,r,t) : x €X; 0 < x < 1,t> 0}for the open sets consisting of set with
zero-dimensional boundary.

We prove the following theorem:

Theorem5.2 The fuzzy metric space R = (R,M, *) has a small inductive dimension
1.

Proof. The usual base for the line R consisting of open ball B(x,r,t) which is an
open interval or R for the usual topology ty. Then the boundary of all such a ball is
two — point set ,with f-ind dimension is equal to zero. By theorem (4.5 ) R is not
zero-dimensional Thus f-ind(R) =1. =

ExampleS.3 In the a above theorem if we take M is defined by
1

M(x,y,t)=1- ( - )for all x,y € R ,t > 0,and * is defined by
XAy XVYy
X
x*y = max{0,x + y =1} , r< 1/x, then B(x,5,t) = ( , ),and it is
1—rx T+rx

boundary is

. X X . X X
two - point set s , and f-ind , =0
1+r 1—rx l+rmx 1—rx
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Abstract

This paper studies the double-stage shrunken Bayesian estimators (DSSBE)
for the mean suggested. In this estimator a shrinkage factor & is taken and the

region R was found by minimizing mean squared error. The numerical result
shows improvement of the double-stage shrunken Bayesian estimators over
the double stage Bayesian estimators in some situations

Introduction

Letx,,j=12 ,i=12,.,n ; » denote two random samples independently
normally distributed population with mean € and variance o> .
Arnold, and Al-Bayyati [4] considered a double stage shrunken estimator of the
mean & when an a prior information about & is available in the form of an initial
estimate &, .
Their estimator is given by:

k(@b -6,)+86, if R
0= nlél +n292
n, +n2

\ (1)
if 6 ¢R

Where 0 <k <1, is the shrinkage factor, R is the parameter, and é1 is MLE

(maximum likelihood estimator) of & based on n,.

Several authors studied the estimator 5 (see, e.g. Whiker, Shurmann, and
Raghunath [5], Al-Robassi [1]).

Bayesian method assumes as before that the random sample, X,,X,,...X, can
from a population with probability density function f(x, @) but further more the
unknown parameter @ is a random variable that is there is additional information

about &,
In this paper we study a double stage shrunken Bayesian estimator (DSSBE) of the

mean & of normal distribution when the variance & is known.

The University Researcher Journal, Issue No. (17), 33-38, June 2008 © The University of [bb, Yemen 2008
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Now suppose that é . =X;,]= 1,2, the sufficient statistic, is the mean of random
~ 0'2
sample of size 71 ; g( 6 ! 0) is N(6,—). Further more suppose that the prior
n.
J
distribution of £ is defined by:
i 0’
exp(——) .-.(2)
N27 2

If the square-error loss function L (é /n 0)= (é = 9)2 isused [3] , then the

h(6) =

Bayes estimator of & is given by:

~

" G.
Oy =—— (3
7 1+0’/n,

Therefore a double stage shrunken Bayesian estimator is defined as follows:
k8, - 6,)+6, if 8, R
0= 1,65 + 1,05

n, +n,

o ..(4)
if Oy R

where, 0 <k <1, R is the suitable region in the parameter space, and ém is the
Bayes estimator of & based on first sample of size 7, ..

Mean squared error, Expected sample size, and
Efficiency.

In this section the DSSBE of the form (4) is considered, mean squared error,

expected sample size and relative efficiency of the estimator 8, are derived as
follows.

MSE@,/6,R) = E@, - 6)°
= MSE(,) + (k* —c?)g,(6;,/ 6, R) +[2k(1- k)6, — 6)

21 Bias(By,)1g: By /0 R) +[(1~K) (6, — 6)?

n?
2 ~ - ~
—c; MSE(6,,)18,(05,/0,R) ...(5)
s mB, +n,0 n’ n’
where §, = -2 —2-82 5L c12=—'2—, cf =--22-, n=n +n,,
‘n +n, n n

and 8,05 /6,R) = (6, —8) £(6,,)d(By,), i =12
R
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If 8, is the true value of 8 then equation (5) becomes:
MSE(8,/6,,R) = E(B; -6,)’
= MSE@,)+ (K> —c2)g,(65, /6y, R)

2nn,

Bias(6;,)g,(65 164, R)

— 2 MSE(B,,)8, (05,16, R) ...(6)
Let us choose the region R so that MSE(8, / 6,,R) is minimum (see [4]) we
get:

nlnzBias(ém) —a g nlnzBias(931) +a

ROy T w @ =e) 7
where @ = \[c7e2[Bias (@51 + (& = YMSE(Dys)
The expected sample size is given by:
E(n/0,R)=n—(n—n)P.(6y €R)
=n_(n_n1)go(é31/9,R) ..-(8)

Therefore, we define the efficiency of the estimator 6, with respect to the Bayesian

estimator & by:

Eff (53 16,R) = MSE(8,,based on a safzple of equivalent size) e
MSE(8,/6,R)

. nb, +n,0
_"M¥Bm 2¥' B2
where 93 =—"

n +n,
Numerical results

The computation of mean squared error and efficiency of the estimator 6, with

respect to the Bayes estimator @, considered in this section by taking

6-6,
n =50, n, =5]0,15,20, k =025, 0.5,0.75 and t = Jn -6 | .
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The following conclusions are based on these computations :
(1) The probability of avoiding the second sample , is decreasing function of

(

(

2)

3)

)

(

3)

the shrinkage factor, whereas it is increasing function of the first sample
n, (see table (1)).
Mean squared error of 5 p is increasing function of the shrinkage factor,

and decreasing function with the first sample 7, (see table (2)).
As expected, the efficiency of the double stage shrunken Bayesian

estimator &, , is better than the efficiency of the Bayesian estimator

. when 8 isclose to 6, .

Table (3) indicates that the efficiency of the suggested estimator is
decreasing function of the shrinkage factor k , and increasing function of’
n,.

All value of k and 7, give highest efficiency only in neighborhood =0 .

Table(1)

8-6
Probability 0f avoiding the second sample for, # = 50, 0 = 10, o= 5, t= -‘———Ol ,/nl

o
n =5 n, =10 n =15 n, =20
kt| 025 0.50 0.78 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75
0.0 0.938 | 0.823 | 0.761 | 0.959 | 0.873 0.837 | 0.962 9.890 0.871 | 0.969 | 0.913 | 0.892
0.2 0917 | 0.786 | 0.710 | 0.936 | 0.859 0.791 Q.943 0.875 | 0.830 | 0.947 | 0.891 0.864
0.4 0.895 | 0.737 | 0.663 | 0.918 | 0.839 0.739 Q927 0.858 0.811 | 0.929 | 0.875 0.830
0.6 0.872 | 0.694 | 0.624 0.889 | 0.778 | 0.701 | 0.903 | 0.826 0.775 | 0.912 | 0.850 | 0.801
0.8 0859 0.657 | 0562 | 0.867 | 0.733 | 0.671 | 0.889 0.783 | 0.729 0.896 | 0.821 0.7711
1.0 0.847 | 0.615 | 0.519 | 0.849 0.692 | 0.604 0.868 0.749 0.683 | 0.871 | 0.785 0.729
1.2 0819 0572 | 0.468 | 0.826 | 0.657 | 0.569 | 0.841 Q.709 0.62_3 0.853 | 0.736 | 0.670
1.4 0.789 | 0.529 | 0.419 | 0.810 | 0.617 0.520 | 0.829 0.673 | 0.560 0.837 | 0.706 | 0.612
1.6 0.764 | 0.481 0.361 0.795 | 0.561 | 0.482 | 0.815 | 0.660 0.516 0.8;20 0.673 | 0.564
1.8 0.735 | 0.428 | 0.321 | 0.774 | 0.510 0.441 Q.79Q 0.569 0.Q69 0.805 | 0.626 | 0.521
2.0 0.697 | 0.357 | 0.211 | 0.730 | 0.483 0.387 | 0.779 | 0.517 | 0.413 | 0.789 | 0.580 0.460
Table(2)
~ |06,
0
msE(8, /6, R) for, § =10, o =5, and t = ——,/nl
c
n =5 n, =10 n =15 n, =20
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k 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

0.0 | 0.095 | 0.158 | 0.171 | 0.061 | 0.097 | 0.117 | 0.046 | 0.89 0.108 | 0,043 | 0.087 | 0.103
02 | 0.118 | 0.169 | 0.186 | 0.073 | 0.118 | 0.128 | 0.057 | 0.115 | 0.126 | 0.051 | 0.113 0.123
0.4 | 0.141 | 0.182 | 0.203 | 0.097 | 0.133 | 0.143 | 0.071 | 0.128 | 0.139 | 0.078 | 0.126 0.137
0.6 | 0.185 | 0.196 | 0.221 | 0.113 | 0.155 | 0.164 | 0.103 | 0.147 | 0.157 | 0.095 | 0.146 0.155
0.8 | 0.230 | 0.208 | 0.237 | 0.129 | 0.178 | 0.181 | 6.121 | 0.173 | 0.176 | 0.117 0.170 | 0.175
L0 | 0.279 | 0.225 | 0.251 | 0.141 | 0.195 | 0.204 | 0.149 | 0.192 | 0.198 | 0.141 0.189 | 0.187
L2 | 0331 | 0291 | 0.304 | 0.169 | 0.237 | 0.233 | 0.169 | 0.219 | 0223 | 0.163 0.214 | 0.221
14 | 0398 | 0312 | 0.327 | 0.182 | 0.261 | 0.274 | 0.187 | 0.247 | 0.257 | 0.184 | 0230 0.243
L6 | 0461 | 0.326 | 0.339 | 0.227 | 0.315 | 0.301 | 0.219 | 0.293 | 0.294 | 0.215 | 0.270 0.280
18 | 0.365 | 0.355 | 0.348 | 0.251 | 0.341 | 0.356 | 0.249 | 0.330 | 0.330 | 0.247 | 0312 0.327
2.0 | 0.571 | 0.458 | 0.427 | 0.289 | 0.407 | 0.419 | 0.287 | 0.387 | 0.379 | 0.278 | 0358 0.368

Table(3)
~ |0-6,|
Eff (8,/0,R) for, 6 =10, o =5, and t ==L [
(o2
n =5 n, =10 n =15 n, =20

kt| 025 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

0.0 | 6.526 | 4.011 | 2.953 | 7.821 | 4.189 | 3413 | 8.201 | 5.203 | 3.932 | 8.900 | 5813 4.310
0.2 | 5703 | 3315 | 2.341 | 6.395 | 3.507 | 2.971 | 7.053 | 4.047 | 3.045 | 8.015 4.965 | 3.591
0.4 | 4250 | 2.712 | 1.932 | 4395 | 2.915 | 2576 | 5917 | 3.341 | 2.610 | 7.217 4.072 | 2.843
0.6 | 3.801 | 1.903 | 1.057 | 3.317 | 2.014 | 1.789 | 4.731 | 2.865 | 1.969 | 6.044 | 3.001 2.169
0.8 | 2.753 | 1.142 | 0.980 | 2.650 | 1.581 | 1.316 | 3.021 | 2.054 | 1.497 | 4.351 2379 | 1.629
L0 1.830 | 0.873 | 0.789 | 1.813 | 0.899 | 0.983 | 2.450 | 1.631 | 1.000 | 3.190 | 1.832 1110
1.2 1.012 | 0.705 | 0.703 | 1.259 | 0.758 | 0.837 | 1.534 | 0.971 | 0.872 | 2.418 | 1.006 | 0.901
14 | 0.831 | 0.571 | 0.639 | 0.985 | 0.696 | 0.721 | 1.069 | 0.823 | 0.763 | 1.505 | 0.879 0.829
1.6 | 0.679 | 0.485 | 0.561 | 0.739 | 0.587 | 0.649 | 0.869 | 0.765 | 0.703 | 0.892 | 0.781 0.740
1.8 | 0485 | 0.445 | 0.483 | 0.590 | 0.569 | 0.573 | 0.753 | 0.682 | 0.649 | 782 0.718 | 0.683
2.0 | 0.401 | 0.406 0.415 | 0.543 | 0.550 | 0.525 | 6.614 | 0.603 | 0.583 | 0.631 | 0.662 | 0.616
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