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Abstract:

One of the most promising ions to be used as a quantum bit

(qubit) is “Ca” n this paper the effect of the laser wavelength detuning
on the quantum register state is studied. Trapped ion quantum
computer that was suggested by Cirac is adopted in this work. Starting-
from laser wavelength 709nm to 749nm, the fidelity is calculated for
different physical and geometrical parameters of the linear Paul trap.
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The two energy levels 4'Su: and ¥Pszof “Ca” are chosen to represent

the two logical states 1Y and 1" states of the qubit. The results show
that the optimum value of the fidelity can be achieved by choosing
suitable values of the physical and geometrical parameters. These
parameters include the laser incident angle with trap axis, axial trap
frequency and Rabi frequency.

I. Introduction

Quantum computer (QC) is a new device, which is powerful to solve
certain important problems efficiently. QC provides massive parallelism by
harnessing the exponential nature of quantum mechanics [1] [2]. This quantum
parallelism is not easy to exploit. However, a few recently discovered quantum
algorithms have created a renewed interest in the potential of quantum computation.

The idea of creating computational devices, based on quantum mechanics,
was first exploited in 1970’s and early of 1980’s by physicists and computer
scientists such as Charles Bennett, Paul and Richard P. Feynman [1]. The idea
emerged when scientists noticed that due to the shrinking of the electronic devices,
Moore’s law, the size of the electronic systems will reach the size of the atoms or
molecules. In that time the rules of the quantum mechanics will be dominant and
thus they ask whether a new kind of computer could be devised based on the
principles of the quantum mechanics?

Many researchers have shown that QCs can solve some problems more
efficiently than the classical one [3] [4] [S]. Obenland [6] studied the effect of two
types of the errors on the QC efficiency, inaccuracies and dissipation of the quantum
state. The QC model used by Obenland is the one that is suggested by Cirac and
Zoller [7]. This model is a string of ions confined in a linear Paul trap as shown in
figure 1. Obenland in his work did not study the effect of the variations of the
physical and the geometrical parameters. This paper is one of a series of papers to
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study the effect of the variations of the physical and geometrical parameters on the
quantum register state.
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Fig.1 Cirac model for trapped ion QC.

2. Theory
2.1 Quantum bit and Quantum register

Quantum bit (qubit) represents the basic unit of storage in the QC. It is like
a classical one in that it can be in two states, zero or one, but it differs from the
classical one in that, because of the properties of quantum mechanics, it can be in
both these two states simultaneously [8]. The ket notation of Dirac will be used to
represent the qubits.

The qubit that contains both the zero and one values is said to be in the

superposition of the ‘0) andll) states. This superposition state persists until the

qubit is measured externally. This measurement operation forces the state to be in
one of the two values. So that, a register that contains M qubits can represent 2"
simultaneous values. A calculation performed using this register produces all
possible outcomes for 2™ input values thereby obtaining exponential parallelism.
Reading out the results of a calculation the qubits have to be measured. This
measurement forces all the qubits to a particular value destroying the parallel state.
Because the qubit is a two state system, it can be represented using the two-
dimensional complex vector space. Figure 2 shows the representation of a qubit that
is in the equal superposition of zero and one. The length of the vector is one because
the probabilities of the two possibilities must sum to one. The vector is represented

by maintaining the projections upon the |0) and |1) states. To create an equal
q

superposition between |0> and ’1> the vector is rotated (in Hilbert space) half way

T . T
between |0> andl 1> . This creates projections COS-Z = Slnz = 1/(\/5 ) for each

of the two states.
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Figure 2. A qubit in the equal superposition state

A quantum register of length M qubit is represented with 2M dimensional
complex vector space [9]. Each string represents a possible bit value of the register.

The state of the register (¥)is therefore a sum of all the possible 2* vectors, as
shown in Equation 1, where each ¢, is a complex number. The squared absolute

value of all ¢, values must sum to one. The squared absolute value is formed by
calculating the inner product between the vector and its complex conjugate.

oM M-l 2
Y= alt) . 2l =1 M
5=0 b=0
Here, the following equations show the possible vectors of a two-bit

quantum register.

B [0 0 0]
0 1 0 0
j00)=1 o=/, 10)=| | =,
o o

Each example shows the encoding of a single state, because only one of the

at, values is non-zero. The '@, values for a vector that represents an equal

superposition state would be non —zero and equal, i.e. 1/ (\/Z ).
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40+
2.2 " Ca” Spectroscopy:

One of the most promising and candidate ion to be used as a quantum bit
is**Ca” . Figure 3 shows the all energy levels of the “°Ca™ . The first two terms of
the spectroscopic notations (electronic shell quantum number and the multiplicity)

are omitted. Five of these transitions (393nm, 397nm, 866nm, 850nm and 854nm)
are allowed dipole transitions. While the other two transitions (729nm and 732nm)

are quadruples transitions. The levels §, p2and Ds, will be associated with the logic
states lO) and |1> states respectively of a qubit. The optical transition between the
two states is an electric quadruple transition. Accordingly, the D5/2 state has a rather

long lifetime (= 1s ) which ensures coherence of the qubit over this time scale [10].

This qubit can be coherently manipulated by a narrow bandwidth laser radiation at
729 nm,
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Figure 3. Energy levels diagram of the 4°Ca+.

(a) Laser-Ion Interaction:

The Hamiltonian of the interaction of an ion trapped in a harmonic
potential of frequency @ with the traveling wave of a single mode laser tuned to a
transition that forms an effective two-level system is [11]:

H=H,+H, )
r’ 1
Hy="—+—mo’x’ +—nw,o,
2m, 2 i
3
]{1 — %T]Q(OJ— +o )(ei(kx—w,t+¢) + e—i(kx—w,r+¢)) (4)
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Where k is the wave number, w, the frequency and @ the phase of the laser
radiation, p is the linear momentum operator, M,is the ion mass, Q) is Rabi
frequency and o, is the Pauli matrix. Here it has assumed that only a single

transition (@, being the atomic transition frequency) is close to resonance and that

the laser traveling wave is directed along the x-axis to the ion. Defining the Lamb-
Dicke parameter,
-

n =kcos(a) \/ 2mna) )
0

where ¢ is the angle between the trap-axis and the laser beam direction. The above
expressions of the Hamiltonian in terms of creation and annihilation operators

(a”and @) can be expressed as:

H, :hw(a+a+%)+%hwa0'z 6)

1 i * ~i —i + - i
I{1 — EnQ(e n7(a+a )O_+e (wyt+¢) +e n(a+a )o_ e:(w,t+¢) (7)

The laser couples the state IS , n> to all states |D,n'> where n,n’ are vibration
quantum numbers. If the laser is tuned close to resonance of the transition
IS, n> Dy |D,n + m> with fixed m and »=0,1,2,3,..... coupling to other levels can

be neglected. The transitions which do not change the number of vibration quanta
(Am = 0) are called carrier transition. A transition is termed blue sideband if an
absorption process is accompanied by increase in the motional quantum number
(Am =+1)while it is termed red sideband if it decreases upon

absorption (Am = —1).

(b) Lamb-Dicke Regime
The coupling strengths of a carrier, red and blue sideband as a function of n
can be calculated. This calculation considerably simplifies in the so-called Lamb-

Dicke regime defined by the condition (7°(27+1)<<1)[6]. The atomic

wavepacket, in this regime, is confined to a space much smaller than the wavelength
of the atomic transition. Using the first order Taylor expansion in Equation (7):

e = pin(a® +a)+0m*) (8)
On the red sideband (‘ S, n) Pt ID, n-— 1>) , the Hamiltonian takes the form:

H, = %an(ao“’ew —a‘c e™) 9)



80 KASIM M. AL-HITY

3. Computational Model
Following Cirac [7] and Obenland [6], Equation (9) can be rewritten as:

1 0 0 0
0 cos(8/2) —iesin 9 0 (10
T(6.¢)= g 2
—ie® sinz cos(@/2) 0
0 0 0 1

where @ = 1)t , @ represents the laser phase and t is the laser pulse time. In our
model, the quantum register can be described as

=[S.n) | (11)

The standard form of the quantum register can be calculated as ', =T (7,0)y ,
while the new values of quantum register take the form ' = T(6(41),0)y . The
w'). The fidelity is used

as criteria for the agreement between the standard and actual value of the quantum
register.

fidelity of the quantum register can be calculated as (l//s

4. Results and discussion

The fidelity as a function of laser wavelength is calculated for different
physical parameters, The simulation shows that the values of the fidelity near to the
unity can be achieved by selecting a complete set of the other parameters. Figure 4
shows the relation between the fidelity as a function of laser wavelength. We start
the scanning process from (A=70%nm to A=749nm). The values of the physical
parameters which are used here: Rabi frequency =150 KHz, the axial trap frequency
w, =1MHz, the calcium ion mass m=40.08Au and the laser pulse time T=5ms. The
variation of the laser incident angle a is starting from 30° to 80°. It is clear that the
change in the fidelity values with respect to the change of the incident angle is not
linear. The decay from the peak value of the fidelity is rapidly decreased for the
small values of laser incident angle. While the deviation from the largest values of
the fidelity, is slowly deceasing for the large values of the laser incident angle.

Figure 5 shows the plotting of the fidelity as a function of the laser
wavelength with the same parameters of figure 4 using different values of Rabi
frequency starting from 100KHz to 500KHz. The value of a in this figure is 75°.
The peak values of the fidelity can be achieved at more than one value of the laser
wavelength. As Rabi frequency increased, the peaks positions are shifted towards
the small values of the laser wavelength.
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(a)Fidelity & wavelenth for a values(30°-45°),
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Figure 4. The fidelity as a function of laser wavelength for different values of laser
angle alpha (a) from (30° to 45°), (b) from (50° to 65°) (¢) from (70° to 80°).
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Figure 5. The fidelity as a function of laser wavelength for different values of Rabi
frequencies (a) from (100KHz to 250 KHz), (b) from (300KHz to 500 KHz).
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The fidelity against the laser wavelength with the same parameters of the
previous figures and different values of laser pulse time starting from Ims to 10ms is
plotted in figure 6. While figure 7 shows the relation between the fidelity and the
laser wavelength with different values of trap axial frequency w, starting from
1MHz to 2MHz. The stability of the curves is increasing as the laser pulse time
(LPT) increases. The best interval of LTP is T=3ms to T=8ms. The values of fidelity
close to the unity represent the optimum values of the corresponding physical
parameters. This goal can be reached by choosing a suitable value of trap
frequencies between 1MHz to 2MHz.
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Figure 6. The fidelity as a function of laser wavelength for different values of laser
pulse time.
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Fidelity as a function of Iwavelength (Wz=1 to Wz=2MHz)
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Figure 7. The fidelity as a function of laser wavelength for different values axial trap
frequency w.

5. Conclusions

The simulation results show that the operational errors, due to the detuning,
affect the fidelity of the quantum register state. The nearest unity value of the
fidelity can be achieved in different cases. Choosing a set of suitable values of the
geometrical and physical parameters gives the nearest fidelity to one. It is clear from
the figures 5-7 that there is a set of optimum values which can be adopted for the
trap design and trap operation.
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