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1) Introduction 

    The interplay of Riemann-Hilbert problems (RH problems, for short) and integral 

equations with the generalized Neumann kernel has been investigated in [12] for 

simply connected regions, in [13] for bounded multiply connected regions, and in 

[9] for simply connected regions with piecewise smooth boundaries. Integral equa-

tions with the generalized Neumann kernel on bounded multiply connected regions 

have been used in [7] to develop a unified method for computing conformal map-

ping onto the classical slit domains. Based on the results of this paper, the method 

presented in [7] can be extended to unbounded multiply connected regions (see [8]). 

In this paper, we shall extend the results of [12, 13] to unbounded multiply 

connected regions. We derive a second kind Fredholm integral equation with the 

generalized Neumann kernel for the RH problems on unbounded multiply connect-

ed regions. Then, based on a Moebius transform, the properties of the derived inte-

gral equation will be deducted from the properties of integral equations with the 

generalized Neumann kernel on bounded multiply connected regions. The derived 

integral equation yields a uniquely solvable boundary integral equation for the mod-

ified Dirichlet problem, which is a special case of the RH problem.  

The remainder of this paper is organized as follows: we present some auxiliary 

material in Section 2. Section 3 presents an integral equation with the generalized 
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Neumann kernel for the RH problem on unbounded multiply connected regions. 

The solvability of the derived integral equation will be studied in Section 4. Section 

5 presents a uniquely solvable integral equation for the modified Dirichlet problem. 

Finally, short conclusions will be given in Section 6. 

2 Auxiliary material 

Suppose that 𝐺 is an unbounded multiply connected region of connectivity 𝑚 

bounded by Γ ≔ 𝜕𝐺 = Γ1 ∪ Γ2 ∪ ⋯ ∪ Γm where the curves Γ𝑗, 𝑗 = 1,2, … , 𝑚, are 

simple non-intersecting smooth clockwise oriented closed curves (see Figure 1). We 

assume that ∞ ∈ 𝐺 and 0 ∈ 𝐺. The complement 𝐺− ≔ (ℂ ∪ {∞})\(𝐺 ∪ Γ) of 𝐺 

consists of 𝑚 bounded simply connected regions 𝐺𝑗, 𝑗 = 1,2, … , 𝑚. The curve Γ𝑗 is 

parametrized by a 2𝜋-periodic twice continuously differentiable complex function 

𝜂𝑗(𝑠) which transverses Γ𝑗 in the clockwise orientation with 𝜂̇𝑗(𝑠) = 𝑑𝜂𝑗(𝑠)/𝑑𝑠 ≠

0. The total parameter domain 𝐽 is the disjoint union of 𝑚 intervals 𝐽𝑗 ≔ [0,2𝜋], 

𝑗 = 1,2, … , 𝑚. We define a parametrization of the whole boundary as the complex 

function 𝜂 defined on 𝐽 by 

𝜂(𝑠) ≔ {
𝜂1(𝑠), 𝑠 ∈ 𝐽1,

⋮
𝜂𝑚(𝑠), 𝑠 ∈ 𝐽𝑚 .

                                                                     (1) 

 

 

Figure 1: An unbounded multiply connected region 𝐺 of connectivity 𝑚. 

 

Let 𝐻 be the space of all real Holder continuous 2𝜋-periodic functions 𝜙(𝑠) of 

the parameter 𝑠 on 𝐽𝑗 for 𝑗 = 1,2, … , 𝑚, i.e., 

𝜙(𝑠) ≔ {
𝜙1(𝑠), 𝑠 ∈ 𝐽1,

⋮
𝜙𝑚(𝑠), 𝑠 ∈ 𝐽𝑚 ,
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where 𝜙1, … , 𝜙𝑚 are real Holder continuous 2𝜋-periodic functions. In view of the 

smoothness of 𝜂, a real Holder continuous function 𝜙̂ on Γ can be interpreted via 

𝜙(𝑠) ≔ 𝜙̂(𝜂(𝑠)) as a function 𝜙 ∈ 𝐻; and vice versa. If 𝜙 ∈ 𝐻 is a piecewise con-

stant real-valued function, i.e., 

𝜙(𝑠) = {

𝛼1, 𝑠 ∈ 𝐽1,

⋮
𝛼𝑚 , 𝑠 ∈ 𝐽𝑚 ,

 

with real constants  𝛼1, … 𝛼𝑚, then 𝜙 will be denoted by 

𝜙(𝑠) = (𝛼1, … , 𝛼𝑚). 

Let 𝐴 be a continuously differentiable complex function on Γ with 𝐴 ≠ 0. We 

assume that 𝐴 is given in the parametric form 𝐴(𝑠) such that 𝐴(𝑠) is continuously 

differentiable for all 𝑠 ∈ 𝐽. With 𝛾, 𝜇 ∈ 𝐻, we define the function 

Φ(𝑧) =
1

2𝜋𝑖
∫

𝛾 + 𝑖𝜇

𝐴

𝑑𝜂

𝜂 − 𝑧Γ

,      𝑧 ∉ Γ.                                                   (2) 

Then Φ is an analytic function in 𝐺 as well as in 𝐺− with Φ(∞) = 0. The boundary 

values Φ+ from inside 𝐺 (the left of Γ) and Φ− from outside 𝐺 (the right of Γ) are 

Holder continuous on Γ and can be calculated by Plemelj’s formulas 

Φ±(𝜂(𝑠)) = ±
1

2

𝛾(𝑠) + 𝑖𝜇(𝑠)

𝐴(𝑠)
+

1

2𝜋𝑖
∫

𝛾(𝑡) + 𝑖𝜇(𝑡)

𝐴(𝑡)J

𝜂̇(𝑡)𝑑𝑡

𝜂(𝑡) − 𝜂(𝑠)
.                       (3) 

The integral in (3) is a Cauchy principal value integral. It follows from (3) that the 

boundary values satisfy the jump relation 

𝐴(𝑠)Φ+(𝜂(𝑠)) − 𝐴(𝑠)Φ−(𝜂(𝑠)) = 𝛾(𝑠) + 𝑖𝜇(𝑠).                                             (4) 

Interior RH problem: Search a function 𝑓 analytic in 𝐺 with 𝑓(∞) = 0, continu-

ous on 𝐺 ∪ Γ, such that  the boundary values 𝑓+ satisfy on Γ 

Re[𝐴(𝑠)𝑓+(𝜂(𝑠))] = 𝛾(𝑠).                                                                  (5) 

To extend the results of [12, 13] to unbounded multiply connected regions, we 

shall borrow some definitions and notations from [12, 13]. We define the following 

boundary value problem in the exterior region 𝐺− as the exterior RH problem. 

Exterior RH problem: Search a function 𝑔 analytic in 𝐺−, continuous on 𝐺− ∪ Γ, 

such that the boundary values 𝑔− satisfy on Γ 
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Re[𝐴(𝑠)𝑔−(𝜂(𝑠))] = 𝛾(𝑠).                                                               (6) 

We define also the range spaces 𝑅± as the spaces of all real functions 𝛾 ∈ 𝐻 

for which the RH problems are solvable and the spaces 𝑆± as the spaces of the 

boundary values of solutions of the homogeneous RH problems, i.e., 

𝑅+ ≔ {𝛾 ∈ 𝐻: 𝛾 = Re[𝐴𝑓+], 𝑓 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑖𝑛 𝐺, 𝑓(∞) = 0},                              (7) 

𝑆+ ≔ {𝛾 ∈ 𝐻: 𝛾 = 𝐴𝑓+, 𝑓 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑖𝑛 𝐺, 𝑓(∞) = 0},                                      (8) 

𝑅− ≔ {𝛾 ∈ 𝐻: 𝛾 = Re[𝐴𝑔−] ,   𝑔 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑖𝑛 𝐺−},                                            (9) 

𝑆− ≔ {𝛾 ∈ 𝐻: 𝛾 = 𝐴𝑔−,   𝑔 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑖𝑛 𝐺−}.                                                  (10) 

 

3 The generalized Neumann kernel 

We define the real kernels 𝑀 and 𝑁 as real and imaginary parts (see [12, 13] for 

details) 

𝑀(𝑠, 𝑡) + 𝑖𝑁(𝑠, 𝑡) ≔  
1

𝜋

𝐴(𝑠)

𝐴(𝑡)

𝜂̇(𝑡)

𝜂(𝑡) − 𝜂(𝑠)
.                                                     (11) 

The kernel 𝑁(𝑠, 𝑡) is called the generalized Neumann kernel formed with 𝐴 and 𝜂. 

It is continuous with 

𝑁(𝑡, 𝑡) =
1

𝜋
Im (

1

2

𝜂̈(𝑡)

𝜂̇(𝑡)
−

𝐴̇(𝑡)

𝐴(𝑡)
).                                                              (12) 

When 𝑠, 𝑡 ∈ 𝐽𝑗 are in the same parameter interval 𝐽𝑗, then  

𝑀(𝑠, 𝑡) = −
1

2𝜋
cot

𝑠 − 𝑡

2
+ 𝑀1(𝑠, 𝑡)                                                         (13) 

with a continuous kernel 𝑀1 which takes on the diagonal the values 

𝑀1(𝑠, 𝑡) =
1

𝜋
Re (

1

2

𝜂̈(𝑡)

𝜂̇(𝑡)
−

𝐴̇(𝑡)

𝐴(𝑡)
).                                                             (14) 

We define the integral operators with the kernels 𝐍 and 𝐌 by 
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𝐍𝜇(𝑠) ≔  ∫𝑁(𝑠, 𝑡)𝜇(𝑡)𝑑𝑡
𝐽

,           𝑠 ∈ 𝐽,                                                    (15) 

𝐌𝜇(𝑠) ≔  ∫𝑀(𝑠, 𝑡)𝜇(𝑡)𝑑𝑡
𝐽

,           𝑠 ∈ 𝐽.                                                    (16) 

The operator 𝐍 is a Fredholm integral operator and 𝐌 is a singular operator where 

the integral in (16) is a principal value integral. 

Lemma 1. (a)  The boundary values of the function Φ defined in (2) can be repre-

sented in terms of the operators 𝐍 and 𝐌 by 

2𝐴Φ± = (±𝐈 + 𝐍 − 𝑖𝐌)(𝛾 + 𝑖𝜇).                                                             (17) 

Proof: By multiplying both sides of (3) by 2𝐴(𝜁) and using the definitions of the 

operators 𝐍 and 𝐌, we obtain (17). ∎ 

Lemma 2. (a) If 𝑓 is analytic function in the unbounded region 𝐺 with 𝑓(∞) = 0, 

then 

(𝐈 − 𝐍 + 𝑖𝐌)(𝐴𝑓+) = 0 .                                                            (18) 

 (b) If 𝑔 is analytic function in the bounded region 𝐺−, then 

(𝐈 + 𝐍 − 𝑖𝐌)(𝐴𝑔−) = 0.                                                             (19) 

Proof: (a) Let 𝛾 ≔ Re[𝐴𝑓+], 𝜇 ≔ Im[𝐴𝑓+] and Φ be formed with 𝛾, 𝜇 according 

to (2). By the Cauchy integral formula, we have Φ = 𝑓 in G, which implies that, 

𝐴Φ+ = 𝐴𝑓+ = 𝛾 + 𝑖𝜇. Hence, (18) follows from (17). 

(b) Let 𝛾 ≔ Re[𝐴𝑔−], 𝜇 ≔ Im[𝐴𝑔−] and Φ be formed with 𝛾, 𝜇  according to (2). 

Since 𝐺− is on the right of Γ, the Cauchy integral formula implies that Φ = −𝑔 in 

𝐺−. Hence, 𝐴Φ− = −𝐴𝑔− = −(𝛾 + 𝑖𝜇) and (19) follows from (17).  ∎ 

There is a close connection between RH problems and integral equations with 

the generalized Neumann kernel (see also [9, 12, 13]). 

Theorem 1. If 𝑓 is a solution of the RH problem (5) with boundary values 

𝐴𝑓+ = 𝛾 + 𝑖𝜇,                                                                         (20) 

then the imaginary part 𝜇 in (20) satisfies the integral equation 
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𝜇 − 𝐍𝜇 = −𝐌𝛾.                                                                      (21) 

Proof: Substituting (20) into (18) then taking the imaginary part, we obtain (21).  ∎ 

It follows from the previous theorem that a solution of the RH problem (5) 

yields a solution of the integral equation (21). To use the integral equation (21) to 

solve the RH problem (5), we have the following theorem. 

Theorem 2. Let the real function 𝛾 ∈ 𝐻 be given, 𝜇 be a solution of (21) and Φ be 

formed with 𝛾, 𝜇 by (2). Then 𝑓 ≔ Φ in 𝐺 satisfies 

𝐴𝑓+ = 𝛾 + ℎ + 𝑖𝜇                                                                           (22) 

With 

ℎ = [𝐌𝜇 − (𝐼 − 𝐍)𝛾]/2. 

Proof: The jump relation (4) implies that the function 𝑓 ≔ Φ in 𝐺 has the boundary 

values 

𝐴𝑓+ = 𝐴Φ+ = 𝐴Φ− + 𝛾 + 𝑖𝜇. 

Since 𝜇 satisfies the integral equation (21), it follows from (17) that 

2𝐴Φ− = −𝛾 − 𝐍𝛾 + 𝐌𝜇 

which implies that ℎ ≔ 𝐴Φ− is real and given by (23). Hence, ℎ ∈ 𝑆−.   ∎ 

 

4 The solvability 

The solvability of RH problems on bounded multiply connected regions was dis-

cussed by Vekua [10] (see also [2, 14]). The solvability on unbounded multiply 

connected regions can be deducted from the solvability on bounded regions by 

means of Moebius transform (see e.g., [11, p. 141]). Let 𝑧0 be a fixed point in 𝐺−, 

say 𝑧0 ∈ 𝐺𝑚. The unbounded region 𝐺 is transformed by means of the Moebius 

transform 

Ψ(𝑧) ≔
1

𝑧 − 𝑧0
                                                                             (24) 
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onto a bounded multiply connected region  𝐺̂ ≔ Ψ(𝐺) of connectivity 𝑚. The 

Moebius transform Ψ transforms also the bounded exterior region 𝐺− onto an un-

bounded region  𝐺̂− exterior to the boundary Γ̂ ≔ 𝜕𝐺̂ = Ψ(Γ). The boundary  Γ̂ is 

given by  Γ̂ ≔ Γ̂0 ∪ Γ̂1 ∪ Γ̂𝑚−1 where  Γ̂0 ≔ Ψ(Γ𝑚) is the outer curve and is coun-

terclockwise oriented; and the other curves  Γ̂𝑗 ≔ Ψ(Γ𝑗), 𝑗 = 1,2, … , 𝑚 − 1, are 

clockwise oriented and are inside  Γ̂0. The curve  Γ̂ is parametrized by  

𝜁(𝑠) ≔
1

𝜂(𝑠) − 𝑧0
,             𝑠 ∈ 𝐽.                                                       (25) 

Let the function  𝐴̂ be defined by 

𝐴̂(𝑠) ≔  𝜁(𝑠)𝐴(𝑠),                 𝑠 ∈ 𝐽.                                                       (26) 

Then, for a given function 𝛾 ∈ 𝐻, we define the RH problems in the new regions 𝐺̂ 

and 𝐺̂− as follows:  

Interior RH problem: Search a function  𝑓 analytic in  𝐺̂, continuous on  𝐺̂ ∪ Γ̂, 

such that the boundary values  𝑓+ satisfy on  Γ̂ 

Re[𝐴̂(𝑠) 𝑓+(𝜁(𝑠))] = 𝛾(𝑠).                                                                  (27) 

Exterior RH problem: Search a function  𝑔̂ analytic in  𝐺̂− with 𝑔̂(∞) = 0, con-

tinuous on  𝐺̂ ∪ Γ̂, such that  the boundary values  𝑔̂− satisfy on  Γ̂ 

Re[𝐴̂(𝑠) 𝑔̂−(𝜁(𝑠))] = 𝛾(𝑠).                                                                  (28) 

We define also the spaces  

𝑅̂+ ≔ {𝛾 ∈ 𝐻: 𝛾 = Re[𝐴̂𝑓+], 𝑓 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑖𝑛 𝐺̂},                                                  (29) 

𝑆̂+ ≔ {𝛾 ∈ 𝐻: 𝛾 = 𝐴̂𝑓+, 𝑓 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑖𝑛 𝐺̂},                                                          (30) 

𝑅̂− ≔ {𝛾 ∈ 𝐻: 𝛾 = Re[𝐴̂𝑔̂−] , 𝑔̂ 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑖𝑛 𝐺̂−, 𝑔̂(∞) = 0},                          (31) 

𝑆̂− ≔ {𝛾 ∈ 𝐻: 𝛾 = 𝐴̂𝑔̂−, 𝑔̂ 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑖𝑛 𝐺̂−, 𝑔̂(∞) = 0}.                                   (32) 

Lemma 3. (a) A function 𝑓 is a solution of the RH problem(5) in the unbounded 

region 𝐺 if and only if the function 

𝑓(𝑤) ≔
(𝑓 ∘ Ψ−1)(𝑤)

𝑤
                                                                     (33) 
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is a solution of the RH problem (27) in the bounded region  𝐺̂.  

(b) A function 𝑔 is a solution of the exterior RH problem (6) in the bounded region 

𝐺− if and only if the function 

𝑔̂(𝑤) ≔
(𝑔 ∘ Ψ−1)(𝑤)

𝑤
                                                                  (34) 

is a solution of the RH problem (28) in the unbounded region  𝐺̂−. 

Proof: The proof follows from the definition of the Moebius transform Ψ and the 

definitions of the RH problems (5), (6), (27), (28).     ∎ 

Lemma 4. The spaces 𝑅±, 𝑆±,  𝑅̂± and  𝑆̂± satisfy 

𝑅̂+ = 𝑅+,          𝑆̂+ = 𝑆+,            𝑅̂− = 𝑅−,           𝑆̂− = 𝑆−.                                  (35) 

Proof: In view of Lemma 3, the proof follows from the definitions of the spaces  

𝑅±, 𝑆±,  𝑅̂± and  𝑆̂±. ∎ 

The index 𝜅𝑗 of the function 𝐴 on the curve Γ𝑗 is defined as the winding num-

ber of 𝐴 with respect to 0, 

𝜅𝑗 ≔
1

2𝜋
Δ arg(𝐴)|Γ𝑗

 ,        𝑗 = 1,2, … , 𝑚,                                                       (36) 

i.e., the change of the argument of 𝐴 along the curve Γ𝑗 divided by 2𝜋. The index 𝜅 

of the function 𝐴 on the whole boundary curve Γ is the sum 

𝜅 ≔ ∑ 𝜅𝑗

𝑚

𝑗=1

.                                                                                 (37) 

The index  𝜅̂𝑗 of the function  𝐴̂ on the curve  Γ̂𝑗 and the index  𝜅̂ of the function  𝐴̂ 

on the whole boundary  Γ̂ are easily calculated from the index of the function 𝐴 by 

𝜅̂0 = 𝜅𝑚 + 1,           𝜅̂𝑗 = 𝜅𝑗 ,           𝑗 = 1,2, … , 𝑚 − 1,            𝜅̂ = 𝜅 + 1.                (38) 

The RH problems (27) and (28) are of the types studied in [13]. Thus, in view 

of Lemma 4 and Eq. (38), we have the following results from [13] for the solvabil-

ity of the RH problems (5) and (6). 

Lemma 5 [13]. The spaces 𝑅− and 𝑆± satisfy 
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𝑆− ∩ 𝑆+ = {0},                                                                             (39) 

𝑅− ∩ 𝑆+ = {0}.                                                                             (40) 

Theorem 3 ([13]). The dimension of the space 𝑆− and the codimension of the space 

𝑅− are determined by the index of 𝐴 as follows: 

dim(𝑆−) = ∑ max(0,2𝜅𝑗 + 1)

𝑚

𝑗=1

,                                                               (41) 

codim(𝑅−) = ∑ max(0, −2𝜅𝑗 − 1).

𝑚

𝑗=1

                                                           (42) 

Theorem 4 ([13]). The dimension of the space 𝑆+ and the codimension of the space 

𝑅+ are determined by the index of 𝐴 as follows: 

(a) If 𝜅 ≥ 0, then 

dim(𝑆+) = 0,        codim(𝑅+) = 2𝜅 + 𝑚.                                              (43) 

 (b) If 𝜅 ≤ −𝑚, then 

dim(𝑆+) = −2𝜅 − 𝑚,       codim(𝑅+) = 0.                                               (44) 

 (c) If – 𝑚 + 1 ≤ 𝜅 ≤ −1, then 

−2𝜅 − 𝑚 ≤ dim(𝑆+) ≤ −𝜅,        2𝜅 + 𝑚 ≤ codim(𝑅+) ≤ 𝑚 + 𝜅.                (45) 

For studying the solvability of the integral equation (21), it follows from (25) 

that 

𝜂(𝑠) =
1

𝜁(𝑠)
+ 𝑧0,         𝜂̇(𝑠) = −

𝜁̇(𝑠)

𝜁(𝑠)2
,        𝑠 ∈ 𝐽. 

Hence 

𝐴(𝑠)

𝐴(𝑡)

𝜂̇(𝑡)

𝜂(𝑡) − 𝜂(𝑠)
=

𝐴̂(𝑠)

𝐴̂(𝑡)

𝜁̇(𝑡)

𝜁(𝑡) − 𝜁(𝑠)
                                                (46) 

where  𝐴̂ is defined by (26). Let the real kernels  𝑀̂ and  𝑁̂ be defined by 
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𝑀̂(𝑠, 𝑡) + 𝑖𝑁̂(𝑠, 𝑡): =
𝐴̂(𝑠)

𝐴̂(𝑡)

𝜁̇(𝑡)

𝜁(𝑡) − 𝜁(𝑠)
.                                                (47) 

i.e., the kernel 𝑁̂ is the generalized Neumann kernel formed with 𝐴̂ and 𝜁. Let 𝐌̂ 

and 𝐍̂ be the integral operators defined on 𝐻 with the kernels 𝑀̂ and 𝑁̂. In view of 

(46), we have 𝑁̂(𝑠, 𝑡) = 𝑁(𝑠, 𝑡) and 𝑀̂(𝑠, 𝑡) = 𝑀(𝑠, 𝑡) for all (𝑠, 𝑡) ∈ 𝐽 × 𝐽. Hence 

𝐍̂ = 𝐍       and       𝐌̂ = 𝐌 .                                                             (48) 

The operators 𝐌̂ and 𝐍̂ are of the types studied in [13]. Thus, in view of Lemma 4 

and Eq. (38), we have the following results from [13] for the properties of the inte-

gral operators 𝐍 and 𝐌. 

Lemma 6 ([13]). The operators 𝐍, 𝐌 and the identity operator 𝐈 are connected by 

the following relations: 

𝐍2 − 𝐌2 = 𝐈,                                                                          (49) 

𝐍𝐌 + 𝐌𝐍 = 0.                                                                         (50) 

Theorem 5 ([13]). The range-spaces and the null-spaces of the operators 𝐌 and 𝐈 ±

𝐍 are related to the spaces 𝑆± and 𝑅± by 

Range(𝐌) = 𝑅+ ∩ 𝑅− ,                                                                 (51) 

Null(𝐌) = 𝑆+ ⊕ 𝑆− ,                                                                 (52) 

Range(𝐈 + 𝐌) ⊂ 𝑅+ ,                                                                            (53) 

Null(𝐈 + 𝐌) = 𝑆− ,                                                                            (54) 

Range(𝐈 − 𝐌) = 𝑅− ,                                                                            (55) 

Null(𝐈 + 𝐌) = 𝑆+ ⊕ 𝑊 ,                                                                 (56) 

where 𝑊 is isomorphic (via 𝐌) to 𝑅+ ∩ 𝑆−. 

Corollary 1. The integral equation (21) is solvable for all 𝛾 ∈ 𝐻. 

Proof: The Formulas (51) and (55) imply that 

Range(𝐌) ⊂ Range(𝐈 − 𝐍), 
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which implies that the integral equation (21) is always solvable.  ∎ 

Theorem 6 ([13]). The dimensions of the null-spaces of the operators 𝐈 ± 𝐍 are 

given by 

dim(Null(𝐈 + 𝐍)) = ∑ max(0,2𝜅𝑗 + 1)

𝑚

𝑗=1

,                                                  (57) 

dim(Null(𝐈 − 𝐍)) = ∑ max(0, −2𝜅𝑗 − 1)

𝑚

𝑗=1

.                                                  (58) 

Lemma 7 ([13]). If 𝜆 is an eigenvalue of 𝐍 with eigenfunction 𝜈 ∉ 𝑆+ ∪ 𝑆−, then 

−𝜆 is also an eigenvalue of 𝐍 and 𝐌𝜈 is a corresponding eigenfunction. 

It follows from Theorem 4 that the RH problem (5) is not necessary solvable 

for general 𝐴 and 𝛾. In the following theorem, we shall show that the right-hand 

side of (5) can be modified such that the new problem is solvable. 

Theorem 7. For any 𝛾 ∈ 𝐻, there exists a real function ℎ ∈ 𝑆− such that the follow-

ing RH problem 

Re[𝐴𝑓+] = 𝛾 + ℎ                                                                       (59) 

is solvable. 

Proof: For any 𝛾 ∈ 𝐻, it follows from Corollary 1 that the integral equation (21) 

has a solution 𝜇. Then, Theorem 2 implies that a real function ℎ ≔ [𝐌𝜇 −

(𝐈 − 𝐍)𝛾]/2 ∈ 𝑆− exists such that 𝐴𝑓+ = 𝛾 + ℎ + 𝑖𝜇 are boundary values of an 

analytic solution 𝑓 in 𝐺. Hence, 𝑓 is a solution of the RH problem (59).   ∎ 

Theorem 8. If dim(𝑆+) = dim(𝐈 − 𝐍), then the space 𝐻 has the decomposition 

𝐻 = 𝑅+ ⊕ 𝑆−.                                                                          (60) 

Proof: Let 𝛾 ∈ 𝐻 be a given function. It follows from Theorem 7 that a function 

ℎ ∈ 𝑆− exists such that 𝛾 + ℎ ∈ 𝑅+. Hence 

𝐻 = 𝑅+ + 𝑆−.                                                                           (61) 

Since dim(𝑆+) = dim(𝐈 − 𝐍), it follows from (56) that 

dim(𝑅+ ∩ 𝑆−) = dim(Null(𝐈 − 𝐍)) − dim(𝑆+) = 0, 
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which implies that 𝑅+ ∩ 𝑆− = {0}. Hence, the sum in (61) is direct.  ∎ 

Corollary 2. If dim(𝑆+) = dim(𝐈 − 𝐍), then for any 𝛾 ∈ 𝐻, there exists a unique 

function ℎ ∈ 𝑆− such that the RH problem (59) is solvable. 

 

5 The Modified Dirichlet problem 

In this section, we shall study the solvability the RH problem (59) and the integral 

equation (21) for the special case 

𝐴 = 1.                                                                                  (62) 

In this case, the kernel $N$ is known as the Neumann kernel [3, p.286] and the RH 

problem (5) is known as the modified Dirichlet problem [2, 5, 6, 14] or the 

Schwartz problem [2]. This special case is of practical use in conformal mapping of 

unbounded multiply connected regions (see [8]). 

The function 𝐴 = 1 has the index 

𝜅𝑗 = 0,        𝑗 = 1,2, … , 𝑚,         𝜅 = 0.                                                       (63) 

Hence, Theorems 3, 4 and 6 imply that 

dim(𝑆−) = 𝑚,       dim(𝑆+) = 0,         dim(Null(𝐈 − 𝐍)) = 0.                     (64) 

Let the real function 𝜒[𝑗](𝑠), 𝑗 = 1,2, … , 𝑚, be defined for 𝑠 ∈ 𝐽 by 

𝜒[𝑗](𝑠) ≔  {
1, 𝑠 ∈ 𝐽𝑗 ,

0, 𝑠 ∉ 𝐽𝑗,
                                                                            (65) 

and the sectionally analytic function 𝑔[𝑗](𝑧) be defined by 

𝑔[𝑗](𝑧) ≔  {
1, 𝑧 ∈ 𝐺𝑗,

0, 𝑧 in the exterior domain of the curve Γ𝑗.
                                    (66) 

Hence 𝜒[𝑗] = 𝐴𝑔[𝑗] ∈ 𝑆− for all 𝑗 = 1,2, … , 𝑚. From (64), we have dim(𝑆−) = 𝑚. 

Since 𝜒[1], … , 𝜒[𝑚] are linearly independent, we obtain 

𝑆− = span{𝜒[1], … , 𝜒[𝑚]} .                                                                  (67) 
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Theorem 9. For any 𝛾 ∈ 𝐻, there exists a unique solution 𝜇 of the integral equation 

(21) and a unique function ℎ = (ℎ1, … , ℎ𝑚) given by (23) such that 𝑓+ = 𝛾 + ℎ +

𝑖𝜇 are boundary values of the unique solution of the RH problem (59). 

Proof. By (64), Null(𝐈 − 𝐍) = {0} which implies, in view of Fredholm alternative 

theorem, that the integral equation (21) has a unique solution 𝜇. Then, Theorem 2 

implies that 𝑓+ = 𝛾 + ℎ + 𝑖𝜇 are boundary values of an analytic function 𝑓 in 𝐺 

where ℎ ∈ 𝑆− is given by (23). Since dim(𝑆+) = 0, 𝑓 is the unique solution of the 

RH problem (59). In view of Eq. (64), Corollary 2 and Eq. (67) imply that the func-

tion ℎ is unique and ℎ = (ℎ1, … , ℎ𝑚) with real constants ℎ1, … , ℎ𝑚.  ∎ 

7) Conclusions 

We have derived and studied a boundary integral equation with the generalized 

Neumann kernel for the RH problem on unbounded multiply connected regions. By 

means of a Moebius transform, we obtained the solvability of the derived integral 

equation from the related known results for bounded regions. Then, the derived in-

tegral equation was used to obtain boundary integral equations for the modified 

Dirichlet problem on unbounded multiply connected regions. 

The boundary integral equations were derived in this paper for regions with 

smooth boundaries. Nevertheless, these equations, with slight modifications, can be 

applied to regions with corners (see [9] for simply connected regions case).   

Several accurate numerical methods are available for solving boundary inte-

gral equations (see e.g. [1]). For regions with smooth boundary, one can use the 

Nystrom method with the trapezoidal rule [1]. For regions with corners, we can use 

a Nystrom method based on the trapezoidal rule with a graded mesh [1,4]. 
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