THE ROLE OF AEROBIC BACTERIA IN ACUTE OSTEOMYELITIS

Abd-Al-Hadi N. M. Al-Kateeb Ph.D
Sawsan H. Authman Ph.D
Saad S. Al-Ani Ph.D
Department of Microbiology, College of Science, University of Al-Mustansiriya, Iraq

Abstract:
This study included the isolation and identification of microorganisms causing chronic osteomyelitis to determine the most common bacteria cause of osteomyelitis in different age groups and sexes in Al-Yarmouk Teaching Hospital and Red Crescent Surgical Hospital in Baghdad for the period from October 2003 to July 2004.

The total studied specimens was 387, they were taken as 343 swabs (88.63%) from wound and 45 aspirate (11.3%) from both hematogenous and exogenous infections.

Patients were grouped according to age, sex and type of infection, which were divided into exogenous 309 (89.84%), and hematogenous 78 (20.63%) osteomyelitis.

Exogenous group included 309 patients and was divided into acute osteomyelitis 237 (76.74%), and chronic osteomyelitis 72 (23.3%). Patients were suffering from postoperative wound infection, infected compound fracture, bullet injury and blast injury and one case diabetes mellitus. The most common age group was found to be 21-30 years.

Hematogenous group included 78 (20.3%) patients with chronic type only, it was common in young men especially in age group 21-30 years representing a statistically significant difference between infection in children and other age groups.

The present study revealed that male/female ratio was found to be 311 (80.36%) / 76 (19.64%). Statistical analysis showed a significant difference in the rate of osteomyelitis in relation to sex. The most common site of infection was found to be femur 147 (37.31%), 257 pathological specimens were obtained in the study.

Gram negative bacteria were the most commonly detected (84.1%) mainly Pseudomonas aeruginosa 87 (31.07%), Klebsiella pneumoniae 54 (19.29%), Proteus mirabilis 33 (11.79%), E. coli 29 (10.36%), Citrobacter spp 7 (2.5%), Enterobacter cloacae 5 (1.79%), Serratia marcescens 2 (0.72%), Citrobacter braakii 3 (1.07%), Serratia fracaris 2 (0.72%), and 1 (0.32%) for all of Chysomonas luteola, Pasturella pneumontropica, Providenciac stuartii, Rahnella aquatitis, and Enterobacter baumanni.

Gram positive bacteria representing 15.9% mainly Staph. aureus 25 (8.93%), then coagulase negative Staphylococcus (Staph. epidermidis) 11 (3.93%), 1 (0.37%) for all of Staph. capitis, Staph. homonis, Staph. xylosis and Streptococcus pyogenes 2 (0.72%).

Introduction
Osteomyelitis is a progressive infection that can include infection of one or multiple parts of the bone (e.g., periostea, medullary cavity, and cortical bone) (1). It is usually a subacute, acute to chronic infection that can cause severe disability if
not properly treated. Common symptoms include chills followed by fever, with acute pain and swelling above the site of inflammation. The inflammation begins in the narrow cavity, causes softening, and erosion of the long bones, often with the formation of pus-containing abscesses, and soon spreads over the entire bone, with consequent death of the hard portions of the bone (2). The disease if untreated progresses from inflammatory destruction of bone, to necrosis (sequestra) followed by new bone formation (1). It is usually a bacterial infection; acute hemato-genous osteomyelitis most commonly occurs in children and usually results in a single site of infection that involves the metaphysis of the long bones (e.g., tibia, femur and humerus); around 50% of cases of osteomyelitis are in preschool children. The overall prevalence of osteomyelitis is 1 per 5000 children. The prevalence of osteomyelitis in neonates is 1 per 1000 (3). Osteomyelitis can be described as ‘acute or chronic’ and ‘hematogenous or contiguous’, according to the duration and source of infection, respectively(4). There is distinct variability in the causative organisms of osteomyelitis in different parts of the world. In most European and North American reports, the most common bacterial isolates in osteomyelitis have been Staphylococci (5), (6), (7), (8), (9), (10). Iraq is a Middle East country with endemic pathogens characteristic of that region. The bacteria may enter the bone through an open injury to the skin, during surgery on the bone, or from the bloodstream. The most common bacteria that cause osteomyelitis include: Staphylococcus aureus, Staphylococcus epidermidis, Streptococci, E.coli, Pseudomonas spp. Salmonella spp. Proteus and other types of bacteria(11). Despite advances in antibiotic treatment, other studies have shown an increasing emergence of methicillin-resistant Staphylococci (MRSA) and Pneumococci (12), (13), (14). Generally, in many parts of the world, including Iraq, information regarding the etiology and antibiotic resistance of bacteria isolated from osteomyelitis are rare or little.

Materials and Methods

Patients: This study included 387 patients clinically diagnosed as cases of osteomyelitis, supported by positive culture and development of specific bone changes on X-ray. Patients were referred to orthopedic department at Al-Yarmouk and Al-Kindy teaching hospitals. Patients were grouped according to the type of infection, age, site of infection and the duration of the illness.

Specimens collection for bacteriological studies:

1. Swabs were taken from patients with an open infected wound or draining sinus and also taken during surgical management.

2. Aspirates taken by a sterile syringe, few millimeters of pus were aspirated during management at the operation theatre, aspirates were centrifuged at 5000 rpm for 5 min. and the deposit was studied microbiologically.

Isolation and Identification:

All specimens were subjected to the following:

1. Direct microscopic examination that included, wet preparation, Gram stained films and Ziehl Neelsen stained films.

2. Cultivation on Blood and MacConkey agars, each specimen was cultured on two sets of media, aerobic and under CO2 condition using candle Jar.

3. Cultural characteristics, Biochemical tests and the use of API 20E System (BioMerieux), were used in identification.
Results and Discussion

The type of culture obtained in osteomyelitis was studied out of 387 patients with osteomyelitis, 151 (39.02%) cases showed no growth, 196 (50.65%) yielded the growth of single organism and 40 (10.34%) yielded mixed bacterial growth. There was, statistically, no significant difference of the incidence of osteomyelitis between single and mixed infection \((P>0.05) \) as shown in figure 1.

![Pie chart showing distribution of osteomyelitis cases](image1)

Figure 1: Rate of single and mixed infection in osteomyelitis.

The type of culture obtained in exogenous osteomyelitis was studied, out of 309 patients with osteomyelitis 127 (41.10%) cases showed no growth, 146 (47.25%) yielded the growth of single organism and 36 (11.65%) yielded mixed bacterial growth. The difference was statistically not significant between single and mixed infection \((P>0.05) \) as shown in figure 2.

![Pie chart showing distribution of exogenous osteomyelitis cases](image2)

Figure 2: Rate of single and mixed infection in exogenous osteomyelitis.
The type of culture obtained in acute exogenous osteomyelitis was studied, out of 237 patients with osteomyelitis, 100 (38.91%) cases showed no growth, 137 (51.75%) yielded the growth of single and mixed organisms (total positive) including 113 yielded single organism and 24 (9.34%) yielded mixed bacterial growth. A statistically no significant difference on the incidence of osteomyelitis between single and mixed infection (P>0.05) as shown in figure 3.

![Figure 3: Rate of single and mixed infection in acute exogenous osteomyelitis](image)

The type of culture obtain in chronic exogenous osteomyelitis was studied, out of 72 patients with osteomyelitis 25 (34.72%) cases showed no growth, 35 (48.61%) yielded the growth of single organism and 12 (16.67%) yielded mixed bacterial growth. Non-significant difference was shown on the incidence of osteomyelitis between single and mixed infection (P>0.05) as shown in figure 4.

![Figure 4: Rate of single and mixed infection in chronic exogenous osteomyelitis.](image)

The type of culture in chronic hematogenous osteomyelitis was studied, out of 78 patients with chronic hematogenous osteomyelitis 24(30.77%) cases showed no growth, 50 (64.10%) yielded the growth of single organism and 4 (5.13%) yielded mixed bacterial growth. A statistically significant difference on the incidence of analysis in a chronic type of hematogenous osteomyelitis, and also
significant difference between single and mixed infection were obtained, as shown in figure 5.

Figure 5: Rate of single and mixed infection in chronic hematogenous osteomyelitis.

The results agreed with (15), who found through his study about hemoglobinopathy and pattern of musculoskeletal infection in children. Those sixty-six bacterial pathogens were isolated from 59 patients; fifty-two were isolated in single culture and 14 in mixed cultures. While the results do not agree with (16), who showed that mixed growth bacteria in chronic hematogenous were 61.5%, while in acute was 34.5.

Table 1: Distribution of identified bacteria in exogenous osteomyelitis.

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>72</td>
<td>33.8028</td>
</tr>
<tr>
<td>Klebsiella pneumonia</td>
<td>42</td>
<td>19.7183</td>
</tr>
<tr>
<td>E.coli</td>
<td>24</td>
<td>11.2676</td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td>19</td>
<td>8.9201</td>
</tr>
<tr>
<td>Staph. Aureus</td>
<td>16</td>
<td>7.5117</td>
</tr>
<tr>
<td>Staph. Epidermis</td>
<td>8</td>
<td>3.7558</td>
</tr>
<tr>
<td>Citrobacter spp.</td>
<td>5</td>
<td>2.3474</td>
</tr>
<tr>
<td>Enterobacter cloacae</td>
<td>5</td>
<td>2.3474</td>
</tr>
<tr>
<td>Citrobacter braakii</td>
<td>3</td>
<td>1.4084</td>
</tr>
<tr>
<td>Serratia spp.</td>
<td>2</td>
<td>0.9389</td>
</tr>
<tr>
<td>Citrobacter freundii</td>
<td>2</td>
<td>0.9389</td>
</tr>
<tr>
<td>B. streptococcus</td>
<td>1</td>
<td>0.4694</td>
</tr>
<tr>
<td>Staph. Homonis</td>
<td>1</td>
<td>0.4694</td>
</tr>
<tr>
<td>Staph. Capitis</td>
<td>1</td>
<td>0.4694</td>
</tr>
<tr>
<td>Staph. Lentus</td>
<td>1</td>
<td>0.4694</td>
</tr>
<tr>
<td>Staph. Xylosta</td>
<td>1</td>
<td>0.4694</td>
</tr>
<tr>
<td>Serratia marcescens</td>
<td>1</td>
<td>0.4694</td>
</tr>
<tr>
<td>Serratia liquefactors</td>
<td>1</td>
<td>0.4694</td>
</tr>
<tr>
<td>Chondrus fasciatus</td>
<td>1</td>
<td>0.4694</td>
</tr>
<tr>
<td>Rhodoccus atravolitii</td>
<td>1</td>
<td>0.4694</td>
</tr>
<tr>
<td>Acinetobacter baumannii</td>
<td>1</td>
<td>0.4694</td>
</tr>
<tr>
<td>Proteus spp.</td>
<td>1</td>
<td>0.4694</td>
</tr>
<tr>
<td>Proteus vulgaris</td>
<td>1</td>
<td>0.4694</td>
</tr>
<tr>
<td>Total</td>
<td>213</td>
<td>100</td>
</tr>
</tbody>
</table>
References

الخلاصة

شملت هذه الدراسة عزل وتشخيص البكتيريا السلبية لالتهاب العظام لدى مرضى من مختلف الأعمار ومن كل الجنسين من الذين راجعوا مستشفى اليموكا التعليمي ومستشفى اليمان الأحمر الجراحي في بغداد لمدة عامين بين تيرين الأول وتموز 2002.

بلغ عدد المصابين الكلية (387) أخذت منها (243) كمينة (88.62%) وبوساطة رشف الجروح، و (44) (11.38%) لكل من حجم العظام الدموي المنشأ وحجم العظام الخارجي المنشأ. قسم المرضى إلى مجموع حسب العمر والجنس ونوع الإصابة التي قمت إلى خارجية المنشأ (89.84%) ودورة المنشأ (78.62%)(2009).

شملت المجاميع ذات النشأ الخارجي 303 مريضاً وقسمتهم إلى خمسم حجم العظام الحاد (237 و274) وخمسم حجم العظام المزمن (22.32%) وهم يعانون من أصابات الجروح بعد العمليات الجراحية وأتراك العظام المركب وجرح النفق الظهاري والانفجارات وحالة سكرية واحدة فقط 166 أغلب الأعمار شوكة كانت بين 21 – 30 سنة.

شملت أصابات العظام الدموية المنشأ المزمنة فقط 78 مريضاً (90%) أكثرها شوكة عند الشباب وبصورة خاصة لعمر 21 – 30 سنة. أظهر التحليل الإحصائي اختلافاً معيناً بين الإصابات في الأطفال والأعمار الأخرى.

أشارت النتائج إلى أن نسبة الذكور (119،516) (72.22%) ونسبة الإناث (41،244) (27.78%) وأظهر التحليل الإحصائي اختلافاً معيناً في معدل الإصابة بالتهاب العظام نسباً للجنس. وجدت اغلب الموافق عرضة للإصابة عند المعد (41،274) (37.12%) والساق (31،572) (36.22%) شكلت البكتيريا البوثية ما عده 78 تموجاً أي نسبة 29.29% من مجموع 800 تموجاً، مرضياً لذل هذه الدراسة فيما شكلت البكتيريا اللاهوائية عزلتين منها (20.71%)، مما يكترنوز والبيروتينوكوس.

كانت البكتيريا السلبية لصيغة كرام هي الغالبة ونسبيها (84.1%) وبصورة أساسية بكتيريا موسون ابروجينوم 78.12% (3،071) وبكبسيليا نيموني (5،849) ميروس ميروس 17.89% (3،436) و البكتيريا كولاي 10.61% (2،372) أضافة إلى أنواع أخرى، أما البكتيريا الموجبة لصيغة كرام كانت نسبتها (15.9%) الغالبة منها ستانس وريسيس 25 (8.92%) وستانس ايدرسيميس 11 (3.93%) وستانس وستانس لم يتس ستانس 2 لكليهما (7.12%).