STEINER DISTANCE POLYNOMIAL OF GRAPH

Walid A. M. Saeed (PhD)

Department of Mathematics, Faculty of Science, Taiz University, Yemen

Abstract: The steiner n-distance polynomial of a connected graph G, $W_n(G;x)$, is defined as $\sum_{k\geq n-1} M_n(G,k)x^k$ where $M_n(G,k)$ is the number of n-sets of vertices of G that are of n-distance k. Such polynomials $W_n(G;x)$ are obtained for some special graphs and for compound graph $G_1 \bullet G_2$ and $G_1 \colon G_2$. Moreover, we give an upper bound for the average n-distance $\mu_n(G)$.

1. Introduction

In this paper, we consider finite connected graphs without loops or multiple edges. For undefined concepts and notations see [1,2].

Let G=(V,E) be a connected (p,q) graph, and let S be an n-subset, $2 \le n \le p$, of vertices of G. The Steiner distance of S, denoted by $d_G(S)$, is the number of edges in a smallest connected sub-graph of G containing S, <u>called a Steiner tree</u>. If n=2, then the Steiner distance of S is the known distance between two vertices of S. Steiner trees have applications to multiprocessors computer networks. For example, it may be desired to connect a certain set of processors with a sub-network that uses the smallest number of communication links. A Steiner tree for the vertices representing such processors that need to be connected corresponds to such a sub-network.

<u>The total Steiner distance</u> of a graph G, for $n \geq 2$, or <u>total Steiner n-distance</u> is denoted by $D_n(G)$, and defined as:

$$D_n(G) = \sum_{S \subset V} d_G(S)$$
 , $|S| = n$.

The average Steiner n-distance of G, $\mu_n(G)$, is defined as:

$$\mu_n(G) = \binom{p}{n}^{-1} D_n(G)$$

The Steiner n-diameter,

$$diam_n(G) = \max_{S \subseteq V} d_G(S)$$
 , $|S| = n$.

In 1997, P. Dankelmann, H. C. Swaet and O. R. Oellermann [3], studied the average Steiner n-distance and obtained upper and lower bounds for $\mu_n(G)$.

The Weiner polynomial or distance polynomial of a graph G [4,5] is defined as:

$$W(G;x) = \sum_{k=0}^{\delta} d(G,k)x^{k}$$
(1)

in which d(G,k) is the number of pairs of vertices of distance k, and δ is the diameter of G.

In this paper we study the Steiner distance polynomial of G, which we define in the following.

Definition (1.1): Let G be a (p, q) connected graph of the steiner n-diameter δ_n where $3 \le n \le p$. Then, the steiner n-distance polynomial of G is defined as:

$$W_n(G;x) = \sum_{k=n-1}^{\delta_n} M_n(G,k) x^k$$
 (2)

where $M_n(G,k)$ is the number of n-sets of vertices of G that are of distance k.

It is clear that (2) is not exactly a generalization of (1); when n = 2, (1) gives:

$$W_2(G;x) = W(G;x) - p$$
 (3)

One may easily see that:

$$D_n(G) = \frac{d}{dx} W_n(G; x) \bigg|_{x=1} = \sum_{k=n-1}^{\delta_n} k M_n(G, k)$$
 (4)

Thus, $W_n(G;x)$ gives us $\mu_n(G)$.

Definition (1.2): Let v be a vertex of a connected graph G, and let $1 \le n \le \delta_n$, we define the polynomial:

$$W_n(v,G;x) = \sum_{k=0}^{\delta_n} M_n(v,G;k) x^k$$
 (5)

where $M_n(v,G;k)$ is the number of n-sets, $1 \le n \le p$, that contain vertex v and each of Steiner distance k.

The number $d_n(v,G)$ is defined in [] as:

$$d_n(v,G) = \sum_{v \in S} d_n(S) \tag{6}$$

Thus:

$$d_n(v,G) = \frac{d}{dx}W_n(v,G;x)\bigg|_{x=1}$$
(7)

2. Steiner n-Distance Polynomial of Some Special Graphs

We give $W_n(G;x)$ when G is a special graph such as complete graph K_p , bipartite complete graph K_{p_1,p_2} , a star graph S_p , wheel graph W_p , and a path graph P_p , and then deduce $\mu_n(G)$ for each such graph.

Theorem 2.1: For each $3 \le n \le p$, we have:

1)
$$W_n(K_p;x) = \binom{p}{n} x^{n-1}$$

2)
$$W_n(K_{p_1,p_2};x) = \left[\binom{p_1}{n} + \binom{p_2}{n} \right] x^n + \left[\sum_{r=1}^{n-1} \binom{p_1}{r} \cdot \binom{p_2}{n-r} \right] x^{n-1}$$

3)
$$W_n(S_p; x) = \binom{p-1}{n-1} x^{n-1} + \binom{p-1}{n} x^n$$

4)
$$W_n(W_p; x) = \left[(p-1) + \binom{p-1}{n-1} \right] x^{n-1} + \left[\binom{p-1}{n} - (p-1) \right] x^n$$

with the assumption that $\begin{pmatrix} a \\ b \end{pmatrix} = 0$ whenever a < b.

Proof: One can easily prove $W_n(G;x)$ for each such special graphs by calculating $M_n(G,k)$ for k=n-1 and for k=n only.

Using theorem 2.1 with (4) we obtain the following result:

Corollary 2.2: For each of $3 \le n \le p$, we have:

1)
$$\mu_n(K_n) = n - 1$$

2)
$$\mu_n(K_{p_1,p_2}) = {p_1 + p_2 \choose n}^{-1} \left\{ n {p_1 \choose n} + n {p_2 \choose n} + (n-1) \sum_{r=1}^{n-1} {p_1 \choose r} {p_2 \choose n-r} \right\}$$

$$3) \quad \mu_n(S_p) = n - \frac{n}{p}$$

4)
$$\mu_n(W_n) = n - \frac{n}{p} - (p-1)\binom{p}{n}^{-1}$$

The next theorem gives us the Steiner n-distance polynomial of a path graph.

Theorem 2.3: Let P_p be a path graph of order p and let $3 \le n \le p$, then:

$$W_{n}(P_{p};x) = \sum_{k=n-1}^{p-1} (p-k) \binom{k-1}{k+1-n} x^{k}$$
(8)

Proof: It is clear that for every subset $S \subset V(P_p)$, |S| = n, the Steiner tree for S is a subpath of P_p . The n-diameter of P_p is p-1. Let P_p be as in Fig. 1.

$$v_1$$
 v_2 v_3 v_{p-1} v_p

Then:

$$M_{n}(P_{p}, n-1) = \left[p - (n-1)\right] \binom{n-2}{0},$$

$$M_{n}(P_{p}, n) = \left(p - n\right) \binom{n-1}{1}$$

$$\vdots$$

$$M_{n}(P_{p}, k) = \left(p - k\right) \binom{k-1}{k+1-n}, \text{ for } k = n-1, n, \dots, p-1$$

This is because if R is a subpath of length k with its terminals in S, then we have to choose (k-1)-(n-2) vertices from k-1 vertices to be in S for such R. The no. of such R subpaths is p-k. Since:

$$W_n(P_p;x) = \sum_{k=n-1}^{p-1} M_n(P_p,k)$$
, then we have the required formula (8).

From theorem 2.3. we obtain $D_n(P_p)$ and $\mu_n(P_p)$ as stated in the following result:

Corollary 2.4: For $3 \le n \le p-1$, and for every path graph P_p , we have:

$$\mu_{n}(P_{p}) = \frac{1}{(n-2)!} \binom{p}{n} \sum_{k=n-1}^{p-1} (p-k) \frac{k!}{(k+1-n)!}$$

$$= \left[(n-2)! \binom{p}{n} \right]^{-1} \sum_{k=n-1}^{p-1} [(p-k)k(k-1)\cdots(k-n+2)]$$
(9)

One may easily find that $\mu_3(P_p) = \frac{1}{2}(p+1)$.

It is clear that if T is a spanning tree of a connected graph G of order p, then:

$$\mu_n(G) \le \mu_n(T)$$
 for each $2 \le n \le p-1$. (10)

Moreover, if P_p is a path graph then:

$$\mu_n(T) \le \mu_n(P_p) \tag{11}$$

Therefore, we have from corollary 2.4.,

Corollary 2.5: For any connected graph G of order p and for every $3 \le n \le p-1$, we have:

$$\mu_{n}(G) \leq \left[(n-2)! \binom{p}{n} \right]^{-1} \sum_{k=n-1}^{p-1} \left[(p-k)k(k-1)\cdots(k-n+2) \right]$$
(12)

Equality holds if and only if $G = P_p$.

The above result gives an upper bound for the average Steiner n-

distance for
$$n = 3$$
, $\mu_3(G) \le \frac{1}{2}(p+1)$.

The following corollary is needed in the next section.

Corollary 2.6: Let v be a terminal vertex of the path graph P_p , and let $2 \le n \le p$. Then:

$$W_n(v, P_p; x) = \sum_{k=n-1}^{p-1} {k-1 \choose k+1-n} x^k$$
 (13)

Proof: It is clear that any n-set S of vertices in P_p either contains v or it is a subset of P_{p-1} abtained from P_p by deleting vertex v. Thus:

$$W_n(v, P_p; x) = W_n(P_p; x) - W_n(P_{p-1}; x)$$

$$= \sum_{k=n-1}^{p-1} (p-k) {k-1 \choose k+1-n} x^k - \sum_{k=n-1}^{p-2} (p-k-1) {k-1 \choose k+1-n} x^k$$

Simplifying the summations we get the required result.

3. Steiner n-Distance Polynomial of Compound Graphs

Let G_1 and G_2 be vertex-disjoint connected graphs, and let $u \in V(G_1)$ and $v \in V(G_2)$. Then, the graph $G_1 \bullet G_2$ defined by Gutman [4] as the compound graph obtained from G_1 and G_2 by identifying the two vertices u and v.

Moreover, Gutman defined the compound graph $G_1:G_2$ as the graph obtained from G_1 and G_2 by joining the two vertices u and v by an edge. The Wiener polynomials of $G_1 \bullet G_2$ and $G_1:G_2$ are given by Gutman as:

$$W(G_1 \bullet G_2; x) = W(G_1; x) + W(G_2; x) + W(u, G_1; x)W(v, G_2; x) - W(u, G_1; x) - W(v, G_2; x)$$
(14)

 $W(G_1:$

$$G_{2};x) = W(G_{1};x) + W(G_{2};x) + xW(u,G_{1};x)W(v,G_{2};x)$$
(15)

In this section, we obtain the Steiner n-distance polynomials of $G_1 \bullet G_2$ and $G_1 \colon G_2$; and then use that to find an upper bound for $\mu_n(G)$.

First, we start with the following simple result:

Theorem 3.1: Let G_1+G_2 be the join of the disjoint connected graphs G_1 and G_2 of orders p_1 and p_2 respectively, Then:

$$W_n(G_1 + G_2; x) = Ax^n + Bx^{n-1}$$
(16)

where:

$$A = {p_1 \choose n} + {p_2 \choose n} - M_n(G_1, n-1) - M_n(G_2, n-1),$$

$$B = {p_1 + p_2 \choose n} - A$$

Proof: Let S be any n-set vertices of $G + G_2$. Then

i) If
$$S \cap V(G_i) \neq \phi$$
 for $i=1$ and 2 , then $d_{G_1+G_2}(S) = n-1$.

ii) If for
$$i=1,2$$
 , $S\subset V(G_i)$, Then :

$$d_{G_1+G_2}(S) = \begin{cases} n-1 & , & when < S > is connected in G_i \\ n & , & when < S > is disconnected in G_i \end{cases}$$

Thus:

$$\begin{split} M_n(G_1+G_2,n-1) &= M_n(G_1,n-1) + M_n(G_2,n-1) + \sum_{r=1}^{n-1} \binom{p_1}{r} \binom{p_2}{n-r}, \\ M_n(G_1+G_2,n) &= \binom{p_1}{n} + \binom{p_2}{n} - M_n(G_1,n-1) - M_n(G_2,n-1) \\ \text{since,} \end{split}$$

$$\binom{p_1 + p_2}{n} = \sum_{k \ge n-1} M_n(G_1 + G_2, k) = M_n(G_1 + G_2, n) + M_n(G_1 + G_2, n-1)$$

Then by substituting we get the required formula for $W_n(G_1 + G_2; x)$.

Theorem 3.2: For $3 \le n \le \delta_n(G_1 \bullet G_2)$, we have:

$$W_{n}(G_{1} \bullet G_{2}; x) = W_{n}(G_{1}; x) + W_{n}(G_{2}; x) + W_{n}(u, G_{1}; x)W_{2}(v, G_{2}; x) + \sum_{r=2}^{n-1} Wr(u, G_{1}; x) [W_{n-r+1}(v, G_{2}; x) + W_{n-r+2}(v, G_{2}; x)]$$

$$(17)$$

Proof: In $G_1 \bullet G_2$, let w be the vertex obtained from identifying u and v. Let S be an n-set of vertices of $G_1 \bullet G_2$. Then, we have the following cases:

i) If
$$S \subset V(G_1)$$
 or $S \subset V(G_2)$, then:
$$d_{G_1 \bullet G_2}(S) = d_{G_1}(S) \text{ or } d_{G_2}(S), \text{ respectively.}$$

ii) If
$$S \cap V(G_1) \neq \phi$$
, $S \cap V(G_1) \neq \phi$ and $w \in S$, then:
$$d_{G \bullet G_2}(S) = d_G(S_1) + d_{G_2}(S_2)$$
, where

$$S_i = S \cap V(G_i)$$
 for $i = 1,2$.

iii) If
$$S \cap V(G_1) \neq \phi$$
 , $S \cap V(G_2) \neq \phi$ and $w \not\in S$, then :

$$d_{G_{\bullet}G_{2}}(S) = d_{G_{1}}(S'_{1}) + d_{G_{2}}(S'_{2})$$
, where $S'_{i} = S_{i} \cup \{w\}$ for $i = 1, 2$.

From the above cases we deduce that for $n \ge 3$:

$$\begin{split} M_{n}(G_{1} \bullet G_{2}, k) &= M_{n}(G_{1}, k) + M_{n}(G_{2}, k) + \sum_{j=1}^{k-1} \sum_{i=2}^{n-1} M_{i}(u, G_{1}, j) M_{n+1-i}(v, G_{2}, k-j) \\ &+ \sum_{j=1}^{k-1} \sum_{i=2}^{n} M_{i}(u, G_{1}, j) M_{n+2-i}(v, G_{2}, k-j) \\ &= M_{n}(G_{1}, k) + M_{n}(G_{2}, k) \\ &+ \sum_{i=2}^{n-1} \left\{ \sum_{j=1}^{k-1} M_{i}(u, G_{1}, j) [M_{n+1-i}(v, G_{2}, k-j) + M_{n+2-i}(v, G_{2}, k-j)] \right\} \\ &+ \sum_{i=1}^{k-1} M_{n}(u, G_{1}, j) M_{2}(v, G_{2}, k-j) \end{split}$$

Hence, $\sum_{k=n-1} M_n(G_1 \bullet G_2, k) x^k$ equals to the formula given in (17).

In [3], the graph $H_{p,k}$, k < p, is defined as the graph constructed from a complete graph of order k and a path graph of order p-k+1 by identifying a terminal v of the path graph P_{p-k+1} with a vertex u of the complete graph K_k . That is: $H_{p,k} = K_k \cdot P_{p-k+1}$.

Then it is proved [] that for any connected graph of order p , $2 \le n \le p$ and chromatic number k

$$\mu_n(G) \le \mu_n(H_{p,k}) \tag{18}$$

with equality if and only if $G = H_{p,k}$.

In order to find such upper bound in terms of p, k and n, we use

Theorem 3.2: Taking $G_2 = K_k$ and $G_1 = P_{p-k+1}$. It is clear that:

$$W_n(v, K_p; x) = {p-1 \choose n-1} x^{n-1}$$

Thus, using theorems 2.3, 3.2 and corollary 2.6, we get:

$$W_{n}(H_{p,k};x) = W_{n}(P_{p-k+1};x) + W_{n}(K_{k};x) + W_{n}(u, P_{p-k+1};x)W_{2}(v, K_{k};x) + \sum_{r=2}^{n-1} W_{r}(u, P_{p-k+1};x)[W_{n-r+1}(v, K_{k};x) + W_{n-r+2}(v, K_{k};x)]$$

$$= \sum_{h=n-1}^{p-k} (p-k+1-h)\binom{h-1}{h+1-n}x^{h} + \binom{k}{n}x^{n-1} + \binom{k}{2}x\sum_{h=n-1}^{p-k} \binom{h-1}{h+1-n}x^{h} + \binom{k-1}{n-r}x^{n-r} + \binom{k-1}{n-r+1}x^{n-r+1}$$

$$+ \sum_{r=2}^{n-1} \sum_{h=r-1}^{p-k} \binom{h-1}{h+1-r}x^{h} \left[\binom{k-1}{n-r}x^{n-r} + \binom{k-1}{n-r+1}x^{n-r+1} \right]$$

$$\frac{d}{dx}W_{n}(H_{p,k};x) = \sum_{h=n-1}^{p-k} h(p-k+1-h)\binom{h-1}{h+1-n} + (n-1)\binom{k}{n} + \binom{k-1}{2}\sum_{h=n-1}^{p-k} (h+1)\binom{h-1}{h+1-n} + (n-1)\binom{k-1}{n-r+1} + (h-n-r+1)\binom{h-1}{h+1-r}\binom{k-1}{n-r+1} + (h-n-r+1)\binom{h-1}{h+1-n} + (19)$$

$$\therefore D_{n}(H_{p,k}) = (n-1)\binom{k}{n} + \sum_{h=n-1}^{p-k} \binom{h-1}{2}k(k-1)(h+1) + h(p-k+1-h)\binom{h-1}{n-r+1} + (19)$$

$$+ \sum_{r=2}^{n-1} \sum_{h=r-1}^{p-k} \binom{h-1}{h+1-r}\binom{h-1}{n-r+1} + \binom{k-1}{n-r+1} + \binom{k-1}{n-r+1} \right]$$

It seems that formula (19) is complicated, but it is useful for given k and n. For example, if G is a planar graph, then $k \le 4$. If we assume that k = 4 and n = 3, we obtain:

$$D_{3}(H_{p,4}) = 8 + \sum_{h=2}^{p-4} (h-1)(hp-h^{2}+3h+6)$$

$$+ \sum_{h=1}^{p-4} {h-1 \choose h-1} \left[(h+1) {4 \choose 2} + {3 \choose 2} \right]$$

$$= 8 + \sum_{h=1}^{p-4} \left\{ -h^{3} + (p+4)h^{2} - (p-9)h + 3 \right\}$$

$$= \frac{1}{12} (p^{4} + 10p^{3} - 145p^{2} + 506p - 504)$$

Thus:

$$\mu_3(H_{p,4}) = \frac{p^4 + 10p^3 - 145p^2 + 506p + 504}{2p(p-1)(p-2)}$$
 (20)

Hence, we have the following result:

Corollary 3.3: For any connected planar graph G of order p:

$$\mu_3(G) \le \mu_3(H_{p,4})$$
, given in (20).

Moreover, if G is any connected graph of order p, and H is a spanning planar subgraph of G, then $\mu_n(G) \le \mu_n(H)$. Thus:

Corollary 3.4: For any connected graph of order p:

$$\mu_3(G) \le \mu_3(H_{p,4}).$$

Now, we consider the compound graph G_1 : G_2 using a method similar to that used for finding $W_n(G_1 \bullet G_2; x)$.

Theorem 3.5: Let G_1 and G_2 be vertex-disjoint connected graphs of orders p_1 and p_2 respectively, and let

$$u \in V(G_1)$$
 , $v \in V(G_2)$ and $3 \le n \le p = p_1 + p_2$ then: $W_n(G_1:G_1:x) = W_n(G_1;x) + W_n(G_1:x)$

$$+x\sum_{r=1}^{n-1} [W_r(u,G_1;x) + W_{r+1}(u,G_1;x)][W_{n-r}(v,G_2;x) + W_{n-r+1}(v,G_2;x)]$$
(21)

Proof: Considering the distance for any n-set of vertices of G_1 : G as we have done for $G_1 \bullet G_2$, we obtain:

$$\begin{split} M_{n}(G_{1}:G_{2},k) &= M_{n}(G_{1},k) + M_{n}(G_{2},k) \\ &+ \sum_{r=1}^{n-1} \sum_{t=0}^{k-1} M_{r}(u,G_{1},t) M_{n-r}(v,G_{2},k-1-t) \\ &+ \sum_{r=1}^{n-1} \sum_{t=0}^{k-1} M_{r}(u,G_{1},t) M_{n-r+1}(v,G_{2},k-1-t) \\ &+ \sum_{r=1}^{n-1} \sum_{t=0}^{k-1} M_{r+1}(u,G_{1},t) M_{n-r}(v,G_{2},k-1-t) \\ &+ \sum_{r=1}^{n-1} \sum_{t=0}^{k-1} M_{r+1}(u,G_{1},t) M_{n-r+1}(v,G_{2},k-1-t) \end{split}$$

Thus, substituting in $\sum_{k=n-1}^{\delta_n} M_n(G_1:G_2;k)x^k$, and noticing that in the last four double summations x^k is written as x x^t x^{k-1-t} , we obtain the required formulas (21).

References

[1] Buckly, F., and Harary, F., <u>Distance in Graphs</u>, Addison-Wesley, Redwood (1990).

- [2] Chartrand, G., and Lesniak, L., <u>Graphs and Digraphs</u>, 2nd ed., Wads worth and Brooks / Cole, California (1986).
- [3] Dankelmann, P., Swart, H.C. and Oellermann, O.R., "On The Average Distance of Graphs With Prescribed Properties", Discrete Applied Mathematics, Vol.79, 91-103 (1997).
- [4] Gutman, I., "Some Properties of the Wiener Polynomial", Graph Theory Notes of New York, xxv, The New York Academy of Science, 13-18 (1993).
- [5] Sagan, B.E.; Yeh, Y.N. and Zhang, P., "The Wiener Polynomial of a Graph", International J. Quantum Chem., Vol. 60, No. 5, 959-969 (1996).