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Abstract: The steiner n-distance polynomial of a connected graph G ,
k
Wn (G, X) , is defined as ZMn (G, k)x where
k>n—1
Mn (G, k) is the number of n-sets of vertices of G that

are of n-distance K . Such polynomials Wn (G;.X) are
obtained for some special graphs and for compound graph

Gl .G2 andGl:Gz. Moreover, we give an upper

bound for the average n-distance L, (G) .

1. Introduction

In this paper, we consider finite connected graphs without loops or
multiple edges. For undefined concepts and notations see [1,2].

Let G = (V, E)be a connected ( p,q) graph, and let S be an
n-subset,2 < n < p, of vertices of G . The Steiner distance of .S,
denoted by d(.S), is the number of edges in a smallest connected

sub-graph of G containing S, called a Steiner tree. If n =2, then
the Steiner distance of S is the known distance between two vertices

of S. Steiner trees have applications to multiprocessors computer
networks. For example, it may be desired to connect a certain set of
processors with a sub-network that uses the smallest number of
communication links. A Steiner tree for the vertices representing such
processors that need to be connected corresponds to such a sub-
network.

The total Steiner distance of a graph G ,for m 2> 2 , or total Steiner n-
distance is denoted by Dn (G ), and defined as :

D,(G)=Y.d.(S) , S| =n.
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The average Steiner n-distance of G, 44, (G), is defined as:

1,(G) = [” ] D,(G)

The Steiner n-diameter,

diam ,(G) = max d;(S) , ‘S‘ =n.

In 1997, P. Dankelmann, H. C. Swaet and O. R. Oellermann [3],
studied the average Steiner n-distance and obtained upper and lower

bounds for 1 (G).

The Weiner polynomial or distance polynomial of a graph G
[4,5] is defined as:

s
W(G;x) =Y d(G.k)x* ()
k=0
in which d(G, k) is the number of pairs of vertices of distance &,

and O is the diameter of G .
In this paper we study the Steiner distance polynomial of G,

which we define in the following.
Definition (1.1): Let G be a ( p , ¢ ) connected graph of the
steiner n-diameter &, where 3 <n < p. Then, the steiner n-

distance polynomial of G is defined as:

577
W.(G;x)= > M, (G, k)x" @)
k=n-1
where M (G, k) is the number of n-sets of vertices of G that are

of distance k .
It is clear that (2) is not exactly a generalization of (1); when

n=2,(1)gives:
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W, (G;x) =W(G;x) - p 3)
One may easily see that:
S,
DG)= 4 (G| = $AM,(G.k) @
dx =1 k=n-1

Thus, W, (G;x) givesus 1, (G).

Definition (1.2): Let v be a vertex of a connected graph G, and let
1 <n <4, we define the polynomial:

3,

W, (v,G;x)=> M, (v,G;k)x" (5)
k=0

where Mn (v, G;k) is the number of n-sets, 1 <m < p. that

contain vertex v and each of Steiner distance & .
The number d " (v, G) is defined in [ ] as:

d,(v.G)=>.d,(S) (6)
vesS
Thus:
d (v,G)= iW (v,G;x) (7)
n dx n

x=1
2. Steiner n-Distance Polynomial of Some Special Graphs
We give Wn(G; x) when G is a special graph such as complete
graph K iy bipartite complete graph K pop, > @ star graph S o wheel

graph W, and a path graph P, and then deduce £z, (G) for each
such graph.
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Theorem 2.1: For each 3 <1 < p, we have:

b W,(K,x) = LPJ &

D WK, - K ][ H
3) Wn(Sp;x)z(p lj
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with the assumption that [b =0 whenever a < b.

Proof: One can easily prove Wn (G; x) for each such special graphs
by calculating Mn (G,k) for k=n—1 and forlk = n only.

Using theorem 2.1 with (4) we obtain the following result:

Corollary 2.2: For each of 3<n< P . we have:

D u,(K,)=n-1

5wk 2T o)) )

n

3) w,(S,)=n——
p

Yo, 0,)= n—n—(p—l)(pj_

p
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The next theorem gives us the Steiner n-distance polynomial of a
path graph.
Theorem 2.3: Let Pp be a path graph of order p and let
3<n< p,then:

W, (P,;x)= pZi (p—k)( el ]xk

k=n—1 k+1—n

(8)
Proof: It is clear that for every subset S < V'(P,), ‘S‘ =n, the

Steiner tree for S is a subpath of Pp . The n-diameter of Pp is
p—1.Let P, beasinFig. 1.

Then:

-1
e =o-n)["])

| k-1
s M,(P,k)=(p—k) ]

k=n—-1,n,-,p-1

This is because if R is a subpath of length k with its terminals
in .S, then we have to choose (k — 1) — (l’l — 2) vertices from k —1

vertices to be in S for such R . The no. of such R subpaths is
p — k. Since:
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p-1
VVn(};;x) = kz 1]\/[n (]i7 ,k), then we have the required formula (8).

From theorem 2.3. we obtain D, (P)) and 4, (P,) as stated in

the following result:

Corollary 2.4: For 3 <n < p —1, and for every path graph Pp, we

have:
1 o k!
w(p)=— 8 (pon) K
(}’l _ 2)'(}7] k=n-1 (k + 1 }’l). (9)
n
= {(n - 2)!(5 H :zll[(p k(e =1)- (k= n+2)]
, 1
One may easily find that £4,(P,) = E(p + 1).
It is clear that if 7" is a spanning tree of a connected graph G of
order p, then:
u(G)su (T) foreach 2<n<p-1. (10)

Moreover, if Pp is a path graph then:
w1, (T) < p, (P,) (11)
Therefore, we have from corollary 2.4.,

Corollary 2.5:  For any connected graph G of order p and for
every 3<n < p—1, we have:

ﬂnw){(n—z){f;j]l S (= =)k =n+2)

k=n-1
(12)
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Equality holds if and only if G = Pp .

The above result gives an upper bound for the average Steiner n-
1

distance for 7 =3, 1, (G) < E(p + 1).

The following corollary is needed in the next section.

Corollary 2.6: Let vV be a terminal vertex of the path graph Pp , and
let 2<n < p. Then:

k=n—1 k+1—n

k-1
W,(v,P,;x)= > ( jxk (13)

Proof: It is clear that any n-set S of vertices in Pp either contains v
or itis a subset of P, abtained from P by deleting vertex V.
Thus:

W,(v. P, x)=W,(P,;x)=W,(P,;x)

p-1 k-1 p—2 k-1
= —k k— _k_l k
k:zn;| (p )[k-i-l—njx k;—l(p {k-&—l—njx

Simplifying the summations we get the required result. |

3. Steiner n-Distance Polynomial of Compound Graphs

Let Gl and Gz be vertex-disjoint connected graphs, and let
ueV(G,) and v € V(G,). Then, the graph G, ® G, defined by
Gutman [4] as the compound graph obtained from G1 and G2 by

identifying the two vertices # and V.
Moreover, Gutman defined the compound graph Gl : G2 as the
graph obtained from Gl and Gz by joining the two vertices # and

Vv by an edge. The Wiener polynomials of G1 o G2 and Gl : Gz are
given by Gutman as:
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W(G, 0G,;x) =W (G;x)+ W (G x)+W(u,G;x)W (v, G, x) (14)
—W(u,G,;x)=W(v,G,;x)
wW(G,:
G, x) =W(G;x) + W (G x) + xW (u, G x )W (v, G5 x)
(15)
In this section, we obtain the Steiner n-distance polynomials of
G1 o G2 and Gl : G2 ; and then use that to find an upper bound for

#1,(G).

First, we start with the following simple result:

Theorem 3.1: Let Gl + Gz be the join of the disjoint connected
graphs G, and G, of orders p, and p, respectively, Then:

W (G, +G,;x) = Ax" + Bx"" (16)

where:

A=(pljnL(pzj—Mn(Gl,n—l)—Mn(Gz,n—l) :

n n
B:(pl+p2]—A
n

Proof: Let S be any n-set vertices of G + Gz. Then

h tSOV(G,)#¢ fori=1and 2. then
dG1+G2 (S)=n-1.
i 1tfor i =1,2, S S V(G,). Then:
n—1 ., when<S >is connected in G,
dG1+GZ (S)= {n l

when < S > is disconnected in G,

b

Thus:
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n-1
M. (G, +G2,n—1)=Mn(Gl,n—1)+Mn(Gz,n—l)+Z(pl]( P j ,
r

r=1 n—r
P P>
Mn(G]+G2,n)=( J—F( j—Mn(Gl,n—l)—Mn(Gz,n—l)
n n

since,

+
[p. sz: ZMn(Gl +G,.k)=M (G, +G,,n)+ M, (G, +G,,n—-1)

n k=n-1

Then by substituting we get the required formula for

W (G, +G,;x).
Theorem 3.2: For 3<n <9 (G, ®G,), we have:

Wn(GI .Gz;x) = VVn(Gl;x)+Wn(Gz;x)+Wn(u»G1;x)W2(V»G2;x) (17)

n-1
+ > Wr(u,G, ;x)[WMH Gx)+W, ,(v,G,; x)]
r=2

Proof: In Gl ° Gz, let W be the vertex obtained from identifying
u and v.Let S be an n-set of vertices of Gl ° Gz. Then, we have
the following cases:
h 1t S cV(G)) o S cV(G,). then:
d . (S) = dy (S) or o, (S). respectively.
iy tSOV(G)#d . SOV(G )# P and WeE S, then:
dg oG, (S)=ds (S)+ dG2 (:S;). where
S =SNV(G,) tori=12.
iy tSOV(G)#d , SOV(G))#P and W S then

dg ., (S)=dy (S))+dy, (Sh).where ST = S, U{w}
for I = 1,2
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From the above cases we deduce that for 7 > 3

k-1 n-1
M,(G ¢Gy.k)=M,(G.k)+M, (G, k) +D > M (.G )M,

J=l =2

(V>G2>k_j)

I—i
k=L n

3> MG M, .Gy k)

7=l i=2

=M,(G.k)+M,(G,.k)

i{kle,(u,G,j)[Mml_f(v,@ak—J‘HMM-"(V’G”k_j)]}

=2 | j=l
k-1

+> M, (WG, )M,v.G,.k— j)
J=

Hence, z Mn (Gl o G2 R k)xk equals to the formula given in (17).
k=n—1

In [3], the graph Hp,k , k< P . is defined as the graph

constructed from a complete graph of order K and a path graph of
order p—k +1 by identifying a terminal Vv of the path graph

P, . with a vertex # of the complete graph K,. That is:
Hp,k = Kk 'prk+l'

Then it is proved [ ] that for any connected graph of order p .
2 <n < p and chromatic number k

with equality if and only if G = H ;..

In order to find such upper bound in terms of p, k and 1, we
use

Theorem 3.2: Taking G, = K, and G = prk+ . It is clear that:
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|
W,v.K,;x)= (p jx”_l

n—1

Thus, using theorems 2.3, 3.2 and corollary 2.6, we get:

Wn (Hp,k ; ‘x) = Wn (prkJrl ; ‘x) + Wn (Kk ; ‘x) + Wn (u’ Pp*kJrl ; x)WZ (V’ Kk 5 ‘x)
n—l1
+ Z Wr (u5 Pp—k+1 ’ x)[Wn—rH (V, Kk ’ ‘x) + Wn—r+2 (V, Kk ’ ‘x)]
2

_ pZ(p—k+1—h)[ h-l ]xh+[ka”1

B

h+1-n n

kY ok( h=-1 "),
+
Zthzn:_l[//l-f-l—n]x

—_

_(k_lj n—r ( k_l ] n—r+1:|
X + X
\n-r n—-r+l

pk —1 A
n(H,,,k;x% = Zh(p—kﬂ—h)( 4-(;7_{ )
x= n

+§ pi (h+ L Hhtn—r+l e
— —
P e & h+—r \n—r " hH—r \n—r+l

. k pk 1 ] h-1
~D(H,)=0=1) +z[Zk(k—l)(h+l)+h(p—k+l—h)_ hilen] (19

h=n-1

gk h-1 k k-1
+ h+n— +
r22h21(h+1—7"]:( " r)(n—r+l) (n—r+l }

It seems that formula (19) is complicated, but it is useful for given
k and n . For example, if G is a planar graph, then k£ < 4. If we
assume that Kk = 4 and n = 3, we obtain:
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-4
Dy(H,,) =8+ (h—1)(hp—h* +3h+6)
h=2

=t(h-1 4\ (3
R HEH]
=8+'§{—h3 +(p+4R —(p-9)h+3)

:112(]94 +10p° —145p” +506p —504)

Thus:

p'+10p° —145p* +506p +504 (20)
2p(p-D(p-2)

Hence, we have the following result:

Hs (Hp,4) =

Corollary 3.3: For any connected planar graph G of order p :
13(G) < ps(H , ). given in (20).

Moreover, if G is any connected graph of order p.and H isa
spanning planar subgraph of G, then 1, (G)< M, (H). Thus:

Corollary 3.4: For any connected graph of order p :
1:(G) < py (Hp,4) :

Now, we consider the compound graph G1 : G2 using a method

similar to that used for finding W (G,  G,;x).

Theorem 3.5: Let G1 and G2 be vertex-disjoint connected graphs of

orders p, and p, respectively, and let
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uelV(G,) , veV(G,) and3<n<p=p, +p, then:
W(G,:G ;x)=W (G;;x)+W (G ;x)

+xX W, (. G5 x) + W, (0, G30)) [, (v.Gy3x) + W, (v.Gy3 )]
7 @1

Proof: Considering the distance for any n-set of vertices of G1 :G

as we have done for Gl ° G2 , We obtain:

M, (G:G,.k) =M, (G,.k)+ M, (G,.k)

n-1 k-1

+ M (u Gl,l‘)M (V,Gz,k—l—l‘)
r=1t=0
n—1 k-1

+ M, (u,G,,0OM, .. (v,G,,k—1-1)
r=1t=0
n-1 k-1

+ Mr+l(u=G1:t)M,,,r(V,G2,k_l—t)
r=1t=0
n—1 k-1

+ M"+1(u’Gl’t)Mn—r+l(V’GZ’k_l_t)
r=1 t=0

Thus, substituting in ZM (G, :Gz;k)xk , and noticing that in
k=n-1
. . . 1
the last four double summations xk is written as x x' xk t, we

obtain the required formulas (21).
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