DESIGN AND OPERATION OF A COHERENT OPTICAL RADAR FOR CIVILIAN APPLICATIONS

Yas M R Al- Hadithi,
Department of Physics, Faculty of Science,
University of IBB, Republic of Yemen.
al_hadithi2001@yahoo.com

Abstract

This paper introduces experimental results of a laboratory scale laser Radar. A computer controlled laser radar system for measuring moving object velocities using both CO2 laser and laser diode was constructed. Different moving objects with different velocities were used. Furthermore, Doppler Shifts, modulation frequencies and laser wavelengths were transferred to a personal computer(PC). From the previous parameters, the pc was able to present target velocities. A special software and the relevant electronic card(type HP-Gp-Ib-designed for spectrum analyzer) were used for noise cancellation and for measuring moving object velocities.

Introduction:

Impressive advances in using laser radiation in Radar(Ladar: Laser-Detection and Ranging), have been demonstrated in several research laboratories and in field applications. Heterodyne detection techniques play a crucial role in building coherent radar systems. Their receivers have significant importance in the scientific exploration of the earths atmosphere and in the investigation of astronomical objects(1). The high spectral resolution of heterodyne receivers is used from the microwave (λ=10mm) to the thermal infrared (λ=10.6μm), to derive the volume mixing ratio profiles of stratospheric trace gases, to determine absolute and relative abundance of chemical species in the interstellar medium, and to deduce the dynamical information from the fine structure of the spectra (1). The basic heterodyne principle depends on mixing two beams to achieve the beating frequency, which impinges on the photos−detector surface. The heterodyne optical receiver uses a laser called the Local oscillator laser, together with a photodiode, to convert an incoming optical signal into an electrical signal called the intermediate frequency (IF) signal. The local oscillator power which proves to have great effect on increasing the signal from target comes from the same laser source. It will in turn facilities the tuning processes and signal reducing the associated noise. Optical communication systems that use a local oscillator are frequently called coherent systems. Coherent optical radar offers nearly ideal characteristics for several reasons. First, the heterodyne receiver behaves as a nearly ideal optical filter(2). The receiver discriminates against any noise outside the required signal bandwidths. This can be a

The University Researcher Journal, Issue No. 12, 37-47, January 2007 © The University of Ibb, Yemen 2007
achieved using electrical bandpass filters. They have broad bandwidths ranging from few MHz to a few GHz. Furthermore, they have sharp edges and flat responses. The second advantage is that coherent transmitters use single-frequency laser source with line widths typical in the range of 1 to 25 MHz(2). When these sources are modulated at speeds of 100 Mb/s to 10 Gb/s, the resulting optical spectral width is comparable to the information bandwidth of the modulating signal. The narrow spectral width reduces the influence of chromatic dispersion in the fiber to a minimum. Further advantage is weak laser signals which are reflected from a target can be easily detected using heterodyne detection technique. It enforces the returned signal from target and also facilitate measuring Doppler shift (DF).

DF arises due to the variation in the returned laser frequency from a moving object (3). It is used to measure fluids, moving objects velocity and to calculate the number of polluting particles in a moving fluid. Signal to noise ratio (S/N) is very much higher in the Coherent detection as compared to direct detection (see figure 1).

The Experimental:

The Experimental setup which was used to study the coherent detection is shown in figure (2). A sealed - off waveguide CO2 laser with the following specifications was used:

Output = 4 watt Mode structure: single mode
Beam diameter: 1.3 mm at e points
Beam divergence: 10 mrad, full angle
Cooling Requirement: 0.25 gal/min

Further instruments were liquid nitrogen cooled Mercury Cadmium Telluride (M.C.T) photoconductive detector, expanding and collimating Galilean telescope, and 3 pieces of germanium windows with diameters of 3cm each and mirrors of 5-7.5 cm diameters were used (4). The CO2 laser was replaced in some experiments with a semi-conductor laser (λ=810 nm) and silicon detector. An acousto optic modulator, RF power amplifier with analogue driver were used to modulate the output laser beam.

A spectrum analyzer having 0-22 GHz frequency band was used to measure Doppler shifts and to know the direction of moving objects. It was capable of measuring as low powers as 1130 dBm.

Spatial filtering

The influence of band pass filter on the interference and on achieving the coherent detection is also studied. It may passively or negatively affects interference. This is decided by the effective area of detector. In heterodyne microwaves receivers, band pass filters determines the required frequency band to pass to the receiver. Consequently, it determines the beating frequency band and eliminates a great amount of noise. In our current research study we have used a spatial filter (pinhole) with a varying hole diameter from 0.5-1.5 mm. The effect of pinhole size on signal amplitude is to reach the optimum coherent detection efficiency at 1.5mm. However, at 0.7mm, the gain was
significantly reduced as well as it was difficult to align the system (see figure 3). Other parameters affecting coherent detection namely, atmospheric attenuation were studied. CO2 laser transmission was found to reduce to 87% at 10% humidity and to 4% at 90% humidity. We observed that coherent detection helps in detecting signals even when humidity increases to 90%. The signal gain was 6 dB at coherent detection in comparison to 1 dB at direct detection.

The type of reflecting object effect is also studied. As an example, the signal amplitude was 60 dB using gold surface. This number was reduced to 35 dB and 30 dB using aluminum and germanium respectively. Furthermore, beating signal was found to increase when increasing the local oscillator power till 10 times then beating signal disappears and coherence is cancelled. The best modulation frequency was at 10 KHZ.

The obtained signal and Doppler shift were very clear especially for slow moving objects.

When the reflected frequency from moving object is changed due to it's velocity, then the signal on the spectrum analyzer will split and a second signal will be drawn to the right or to the left of the original signal (depending on object's direction). It represents frequency shift or Doppler shift which can be calculated as follows:

\[\Delta \nu = \nu \cos \theta / \lambda \]

where \(\Delta \nu \) is the Doppler shift.

\(\nu \) = moving target velocity.

\(\lambda \) = laser radiation wavelength.

\(\theta \) = angle between the incident radiation on target and the direction of movement.

Results, discussions and conclusions

A-Heterodyne Detection and Doppler shift:

To prove the heterodyne detection principle, a Michelson-like setup using the CO2 laser system was constructed. This was to prove the heterodyne interference. The interference frequency which represents the interference between the LO wave and the reflected signal from a stationary target (S) is shown in figure (4). Doppler shift for a moving target towards the system with a velocity of 8.3 mm/sec producing 1.5 8 KHz Doppler shift is shown in figure (5). When blocking either the LO or the reflected signal, the signal was found to disappear on the oscilloscope. This is further evidence for the occurrence of the H.D (i.e. Beating signal) from mixing both waves. When taking each wave alone, the wave gain was 35 dB, while in mixing the gain was 40 dB. This is justified due to the occurrence of beating frequency.

B-Laser Modulation:

Modulations of 100 Hz to 6 KHZ was achieved using the laser beam chopping technique as a simple modulation approach. Electronic modulation (i.e. interfacing an on-off electronic circuit to a power supply) was used to achieve 1 KHZ to 10 KHZ to the output laser radiation. Furthermore, an external modulator unit adapted to the CO2 laser was used to modulate the laser beam in the range 1 KHz to 30 KHZ. Increasing modulation was found to decrease the laser power (see figure 6). This suggests that signal will disappear when using low laser powers at high degree of modulation. The
best signal amplitude accompanied with clear Doppler shift was found to be at 10 KHZ modulation. It is recommended that modulation should be twice as much as the Doppler shift. This guarantees no interference with Doppler shift on the spectrum analyzer screen and consequently recognizes target velocity.

C- Computerizing The System :-
The output signal from the radiation detector to the spectrum analyzer was processed in this work. This was to obtain several parameters needed for building the coherent laser radar. The aforementioned parameters were signal amplitude, modulation, Doppler shift and target speed and direction. HP- GP- IB electronic card to interface the spectrum analyzer to a personal computer was used. The objectives of using the card are to program the spectrum analyzer, determining the spectral range of the analyzer, sending information to the PC and simultaneously analyzing information including measuring target velocity. This was done through building a special software. The IEEE-488-GP-IB card is specially designed to communication between the spectrum analyzers (types 8566A&8566B) for a maximum distance of 20 meter and the computer.

Four computer programs were produced to control the signal transformation process. The first is to program the analyzer through determining the working spectral range, bandwidth, gain (dBm), and the sweep time. The second is to transform signal from analyzer to the PC, while the third program analyzes signal and types target velocity and Doppler shift values. It also shows the selection screen for the second time. Screen has the following selections :-
1- Save: It saves the signal.
2- Load: It loads a diagram from previous experiment.
3- End: to end and exit the program.

Quick basic language was used to write the programs. It was converted on a compact Disk (CD) as Execution program. This facilitates using it even on personal computers having no quick basic.

Furthermore, a subroutine was added to eliminate noise and select Doppler shift only. Some pictures which were transformed from the analyzer using the PC are shown in figure (7). Target velocity and Doppler shift are shown on these figures. A program was designed to calculate Doppler shifts assuming three different laser wavelengths are shown in figure (8). It is shown that Doppler shift increases at the visible part of the electromagnetic spectrum in comparison to the infrared region. The experimentally obtained results are also shown in the figure for comparison.

In conclusion, a computer controlled laser radar system for civilian applications was build and operated. It facilitated measuring velocities of moving targets using both CO2 (10.6μm) and the semiconductor (810 nm) lasers.
References:

Figure (1) Signal to Noise Ratio using coherent and direct detection to the received signal power(5).

Figure (2) Schematic showing Coherent detection system with the acousto-optic modulator.
Figure 3: The influence of spatial filter size on the signal amplitude which was observed experimentally.

Figure 4a:
Figure (4b) the increase in the beating frequency with the increase of the local oscillator power.
Figure (5) Doppler shift for a moving target towards the system with a velocity of 8.3 mm/sec producing 1.58 KHz Doppler shift.

Figure (6) The decrease of Laser power when increasing modulation.
Figure (7) Pictures transformed from the spectrum analyzer using PC showing the Doppler velocity and the modulation frequency
Figure (8) Doppler Shifts assuming three different laser wavelengths as a function of target velocity.